
The SCI Programming Language

(an appendix to the SCI32 documentation manual)

Author: Jeff Stephenson
4 April 1988

Revised by: Susan Frischer
1st Revision: 14 September 1994

2nd Revision: 28 September 1994

SIERRA CONFIDENTIAL

Table of Contents

Introduction 3

Primitive Procedures .. 4
Arithmetic primitives .. 4
Boolean primitives. .. 7
Assignment primitives. .. 9

Data Types and Variables. 10

Definitions 14

Control Flow .. 16
Conditionals . 16
Iteration .. 18

Procedures .. 21

Files. .. 25

Compiling SCI .. 23

Page 2
SCI Programming Language

Introduction to the SCI Language

The SCI language is an object-oriented language with a Lisp-like syntax. It is compiled by the sc
compiler into p-machine code which is used by the interpreter, scLexe. We will begin our
discussion of the language with its basic Lisp-like characteristics, then go on to the object­
oriented parts of the language. Like Lisp, SCI is based on parenthesized expressions which
return values. An expression is of the form:

(procedure [parameter parameter ... l)

The parameters to a procedure may themselves be expressions to be evaluated, and may be
nested until you lose track of the parentheses. Unlike Lisp, @ procedure itself may not be the
result of an evaluation. An example of an expression is: \.,-}

.~ .
(+ (- y 2) (/ x 3))

which would be written in infix notation as:

(y - 2) + (x / 3)

All expressions are guaranteed to be evaluated from left to right. Thus,

(= x 4)
(= y (/ (+= x 4) (/ = x 2)))

will result in y = 2 and x = 4.

Comments in SCI begin with a semicolon and continue to the end of the line.

Page 3
SCI Programming Language

Primitive Procedures

Arithmetic primitives

In the following examples, e1, e2, ete. are arbitrary expressions. Braekets [...] indieate optional
entries. Proeedures evaluate their parameters from left to right.

Addition

(+ e1 e2 [e3 ...])

evaluates to: e1 + e2 [+ e3 ...]

example: (+ 7 12 4) evaluates to 23.

Multiplication

(* e1 e2 [e3 ...])

evaluates to: e1 * e2 [* e3 ...]

example: (* 2 10 3) evaluates to 60.

Subtraction

(- e1 e2)

evaluates to : e1 - e2

example: (- 20 11) evaluates to 9.

Division

(/ e1 e2)

evaluates to: e1 / e2

example: (/ 24 6) evaluates to 4.

Remainder

(mod e1 e2)

evaluates to: the remainder of e1 when divided by e2.

example: (mod 17 5) evaluates to 2.

Page 4
SCI Programming Language

Operation Shift Left

«< e1 e2)

evaluates to : e1« e2 where the « operation shifts its left hand side left by
the number of bits specified by its right hand side.

example: «< 7 2) evaluates to 28.

In binary: 111« 2 = 11100

Operation Shift Right

(» el e2)

evaluates to: e1» e2 (as in « except with a right shift)

example: (» 7 2) evaluates to 1.

In binary: 111» 2 = 001

Bitwise Exclusive OR Operator

(" e l e2 [e 3 ...])

evaluates to: e1" e2 [" e3 ...]

example: (" 11 26 1 evaluates to 17.

In binary: 01011" 11010 = 10001

Bitwise AND Operator

(& el e2 [e3 .. .] l

evaluates to: e1 & e2 [& e3 .. .]

example: (& 11 26 1 evaluates to 10.

In binary: 01011 & 11010 = 01010

Bitwise OR Operator

(I el e2 [e 3 ...] l

evaluates to: e1 1 e2 [I e3 ...]

example: (I 11 26 1 evaluates to 27.

In binary: 01011 111010 = 11011

Page 5
SCI Programming Language

Bitwise NOT

(- eI l

evaluates to: the bitwise not of e1 (all 1 bits are changed to 0 and all 0
bits are changed to 1).

example: (- 11 1 evaluates to -12.

In binary: - 01011 = 1111111111110100 (all the leading Os in
the 16 bit number change to 1s).

Page 6
SCI Programming Language

Boolean primitives

These procedures evaluate their parameters from left to right and terminate the moment the
truth value of the expression is determined. If the truth value of the Boolean expression is
determined before an expression is reached, that expression is never evaluated. Brackets [...]
indicate optional entries. The compiler predefines FALSE to be 0 and TRUE to be 1.

Greater Than

(> e l e2 [e3 ...])

evaluates to: TRUE if e1 > e2 [> e3 ...], else FALSE.

example: (> 7 4 6) evaluates to FALSE.

Greater Than or Equals

(>= ele2 [e3 .. .])

evaluates to : TRUE if e1 >= e2 [>= e3 ...], else FALSE.

example: (>= 7 4 4) evaluates to TRUE.

Less Than

« el e2 [e3 ...])

evaluates to : TRUE if e1 < e2 [< e3 .. .], else FALSE.

example: « 2 4 5) evaluates to TRUE.

Less Than or Equals

« = el e2 [e3 .. .])

evaluates to: TRUE if e1 <= e2 [<= e3 ...], else FALSE.

example: « = 7 8 7) evaluates to FALSE.

Is Equal To

(==ele2 [e3 ...])

evaluates to: TRUE if e1 == e2 [== e3 ...], else FALSE.

example: (== 1 TRUE 1) evaluates to TRUE.

Page 7
SCI Programming Language

Is Not Equal To

(!= el e2 [e3 ...])

evaluates to: TRUE if e1 != e2 [!= e3 ...], else FALSE.

example: (! = 7 4 6) evaluates to TRUE.

AND

(and el e2 [e3 ...])

evaluates to: TRUE if all the expressions are non-zero, else FALSE.

example: (and 7 4 6) evaluates to TRUE.

OR

(or el e2 [e3 ...])

evaluates to: TRUE if any of the expressions are non-zero, else FALSE.

example: (or 3 0 2) evaluates to TRUE.

NOT

(not el)

evaluates tO: TRUE if the expression is zero, else FALSE.

example: (not 6) evaluates to FALSE.

Page 8
SCI Programming Language

Assignment primitives

All assignment procedures store a value in a variable and return that value as the result of the
assignment. In the following, v is a variable and e is an expression.

(= v e) evaluates to v=e

(+= v e) evaluates to v=v+e

(-= v e) evaluates to v = v - e

(*= v e) evaluates to v = v * e

(/= v e) evaluates to v = v / e

(1= v e) evaluates to v = v I e

(&= v e) evaluates to v=v&e

(1\= v e) evaluates to v=vl\e

(»= v e) evaluates to v = v» e

«<= v e) evaluates to v = v« e

(++ v) evaluates to v=v+1

(-- v) evaluates to v = v - 1

Page 9
SCI Programming Language

Data Types and Variables

Numbers
All numbers in SCI are 16 bit integers with a range of -32768 to +32767. Numbers
may be written as decimal (1024), hex ($400), or binary (%10000000000).

Variables
Variables hold numbers. Variables can be either global, local, or temporary, depending
on when they are created and destroyed. The maximum variable name length is 2047
characters. SCI variables are case sensit"ve (i.e.: MyVariable!= myVARIABLE). A
variable canno egm with a number or a special character: # () , . @ [] , " { - nullli IIJ
11M space.

Local variables are created when a script is loaded and destroyed when it is purged.
They are only available while the script is in memory and will not retain a value through
a purge-reload cycle. Local variables mayaiso be assigned an optional value at the
time of definition (as in the following example: firstVar is assigned the value of 4) .

Local variables may be single variables:

(local
firstVar = 4
secondVar
thirdVar

or defined as arrays. When defining an array, you have the option of assigning a value
to the first element of the array only (the succeeding elements must be assigned their
values in additional statements). Note that the brackets surrounding the array definitions
do not mean "optional." They are required. Also note that the first element of an array is
designated as element 0, the second as element 1, etc. In the following, firstArray is
defined to have 10 elements (0 - 9), the first element of which is assigned the value of 2:

(local
[firstArray 10]
[secondArray 5]
[thirdArray 3]

Use the statement:

[myArray n]

2

to access element n of myArray. To access the fourth element of firstArray (the ten
element array from the above example), write:

[firstArray 3]

Since each file may have only one local statement, that statement must include all the
local variables used in that file . Therefore, the statement may contain both single and
multiple (array) definitions:

Page 10
SCI Programming Language

(local
[firstVar 5]
secondVar
thirdVar
[fourthVar 3]

Despite the syntactic difference between single variable and local array declarations,
SCI really makes no distinction between them. Think of the local declaration statement
as a single array containing all the variables (including array elements) listed
consecutively. Any variable may be accessed as an element of this "super-array," using
any other variable as an index into the array. To clarify this concept, consider the
following statement:

(local
var1
var2
var3
var4

Although these are all single variables, they are considered by SCI to be elements
of a four element "super-array." Thus, the value of var1 can be set to that of var4 by any
of the following statements:

(= var1 var4)
(= var1 [var2 2])
(= var1 [var3 1])
(= [var2 -1] [var1 3])

The first method is obviously the preferred method for clarity, but this array property of
all variables allows access to variable numbers of parameters in a procedure (see
section on procedures).

Global variables live for the duration of the entire game and are accessible to all scripts
at all times. Thus they must be defined at the start of the game, either in room 0 or in a
header file included by room O. The definition of a global variable includes its name
followed by a unique index number to be used by the table of global variables. An
optional value assignment is also permitted. In this example, firstVar has the index
number 0 and contains the value 7:

(global
firstVar
secondVar
thirdVar

o
1
2

7

20

The syntax for agiobai array differs slightly from that of a local array, though the
philosophy of consecutive elements remains the same. To declare a global variable,
leave an array-sized gap in the numbering sequence. In the following, var2 is defined as
agiobai array of 10 elements:

Page 11
SCI Programming Language

Text

(glob al
var l 23
v a r2 24
var3 34

To access the seventh element of var2, write:

[var2 6)

Temporary variables are created when a procedure or method is entered and
destroyed when it is left. Therefore they are only available to the declaring procedure
and do not retain a value between calls to that procedure. Temporary variables are
defined using the symbol &tmp. The discussion on temporary variables will be
continued in the section on user-defined procedures.

Text strings are strings of characters enciosed in double quotes, and may be used
anywhere you like. Note that the older notation enciosed text within curly braces; this
notation may still be seen in some code modules.

(Prints "Thi s i s immedia t e tex t.")

prints the text string within the quotes.

(= textTo Pri n t "This t ext i s re f erenced t hrough a
variabl e .")

sets the variable to the pointer to the text string. A text string mayaiso be defined as the
name property of an object (this concept will be clarified in the appendix on object­
oriented programming).

When SCI goes to squirrel a text string away, it fi rst checks to see if it has seen the string before.
If so, it just uses the previous text, rather than duplicating it in another location. If you are using
the same lengthy text string in several places, it is possible that you will not type the identical
string in each case. Therefore, you can save yourself some trouble (and some memory) by
putting the text into adefine statement:

(de f i ne l o t sOfText "This is a long text string . I a m u sing a
d e fi ne s t a t ement t o avo i d having to t yp e i t repeatedl y .")

This introduces another aspect of text strings. If text is too long fit on a single line, you may
enter it on several lines. Multiple white-spaces (spaces, tabs, and new lines) get converted to a
single space, so the text above ends up with just one space between the words on each line. If
you want multiple spaces, enter them as underscores (_). These are converted to spaces in the
string and are not compacted.

To include an underscore in the text, type _ where \ (backslash) is the escape character.
Explicit new lines (Iine feeds without carriage returns) are entered as \n (as they are in C). A
CR/LF (carriage return/line feed) pair is entered as \r. Note that the \r should be used in place of
\n in all strings destined for a file. Characters which are not on the keyboard, but are defined in a
font can be included in a text string by preceding the character's two-digit hex value with the \ .
For example:

(Prints "This is the Sierr a symbol : \ 01 ")

Page 12
SCI Programming Language

would put the value 1 at the end of the string, and this character in the default font is the Sierra
symbol.

The maximum length of a text string is 2047 bytes.

Characters
Characters are single ASCII characters, denoted by preceding the character with
a reverse single quote (or tick). For example:

'A represents uppercase A
'? represents the question mark

Several character sequences represent special key combinations:

'''a represents ctrl-A
' @b represents alt-B
'#4 represents the F4 key

Literal selectors
Selectors represent methods or properties (and will be further defined in the appendix on
object-oriented programming). Placing apound sign (#) in front of the selector will
return the numeric value for use as a parameter. In the following example, the value of
the selector showSelf is passed as a parameter to the method eachElementDo:

(ca s t eachElementDo : #showSel f)

Literal selectors are commonly used by Collection objects to pass aselector to each of
their elements in turn.

Page 13
SCI Programming Language

define

\

Definitions

The define statement allows you to define a symbol which will stand for astring of text:

(define symbol lots of text)

will replace symbol, wherever it is encountered as a token, with lots of text and then
continue scanning at the beginning of the replacement text. Thus, if we write:

then:

(define symbol some text)
(define same even more)

(symbol)

will become:

(some text)

which then becomes:

(even more text)

The enum statement eases the definition of the various states of astate-variable. Say
you want to walk an actor from the door of a room across the floor, up the stairs, and
through another door. You have astate-variable called actor-pos which will take on a
number of values. These could be defined with defines as folIows:

(local actorPos
define AT FRONT DOOR
define IN ROOM
define ON STAIRS
define TOP OF STAIRS
define UPPER DOOR

or you could get the same result with enum:

(local actor-pos
(enum

AT FRONT DOOR
IN ROOM
ON STAIRS
TOP OF STAIRS
UPPER DOOR

Page 14

0)
1)
2)
3)
4)

SCI Programming Language

Enum defaults its first symbol to O. If you want a different starting value, put it right after
the word enum:

(enum 7
AT FRONT DOOR
IN ROOM
ON STAIRS
TOP OF STAIRS
UPPER DOOR

sets AT FRONT _ DOOR to 7, IN _ ROOM to 8, etc.

The value of an enum mayaiso be defined by an expression, as folIows:

(enum
AT FRONT DOOR = (+ AT REAR DOOR 1)

Note: Define and enum statements may be included within both global and local
variable definitions.

Page 15
SCI Programming Language

Control Flow

The value of a control flow expression is the value of the last expression in the control body
which was evaluated. Thus, if we execute the following code:

(= x 3)

(= Y 2)
(= Y

(if (> x y)
(- x y)

else
(+ x y)

Y will have the value 1 .

In the following, code1, code2, ... codeN are sequences of expressions. Brackets [...] indicate
optional entries. The term "not FALSE" is used to indicate a non-zero result.

Conditionals

if

cond

(if expression code 1 [else code2J)

If expression is not FALSE, execute code1, else execute code2.

example: Set the value 0' x to the larger 0' a or b.

(if (> a b)
(= x a)

else
(= x b)

;expression
;code1

;code2

(cond (expl codel) (exp2 code2) ... [(else codeN) J)

Evaluate e1. If it is not FALSE, execute code1 and exit the cond clause. If it is
FALSE, evaluate e2 and continue. If all of the expressions are FALSE and the
optional else clause is present, execute codeN .

Page 16
SCI Programming Language

switch

example: Set x to the larger of a or band to 0 jf a = b.

(cond
((== a b)

(= x 0)

((> a b)

(= x a)

(else

(= x b)

;expression1
;code1

;expression2
;code2

;codeN

(switch e x pression (exp1 code1) (exp2 code2) ... [(else
codeN) 1)

Evaluate expression. If it is equal to exp1 , execute code1 and exit the switch. If
it is equal to exp2, execute code2 and exit. If it doesn't equal any of the
expressions and the optional else clause is present, execute codeN.

example: Evaluates a - b.

(switch (- a b)
(0

(Prints "They are equal")

(-1

(Prints "B is one unit larger than A")

(1

(Prints "A is one unit larger than B")

(else

;expression
;expression1
;code1

;expression2
;code2

;expression3
;code3

(Prints "A and B differ by more than one") ;codeN

switchto
(switchto e xpression (code1) (code2) ... [(else codeN) l)

Evaluate expression. If it is equal to 0, execute code1. If it is equal to 1,
execute code2, and so on. switchto is a shorthand form of the switch
statement where the test values are consecutive integers beginning with O. It is
commonly used in the changeState method of an SCI script object (where the
expression is the state of the script).

Page 17
SCI Programming Language

Iteration

tor

while

example: Evaluates the variable stateNum.

(switchto stateNum
(

)

(

(Prints "This is state O")

(Prints "This is state 1")

(else

;expression

;code1

;code2

(Prints "The variable stateNum is not 0 or 1") ;codeN

(for (initialization) condition (re-initialization) code)

Evaluate the expressions comprising initialization. Then evaluate condition. If
the result is FALSE, exit the loop. Otherwise, execute code, then the
expressions comprising re-initialization, and loop back to condition .

example: Set x = a + b while i < n. Note that this value does not change.

(for
((= a 0)(= b 1)(= i 3))

« i n)

((++ i))

(= x (+ a b))

;initialization
;condition
;re-initialization
;code

Note that the initialization statements may include more than one expression
and therefore require a set of surrounding parentheses.

(while condition code)

Evaluate condition . If not FALSE, execute code and loop back to evaluate
condition again. Exit the loop when condition is FALSE. (Note that this means
that the resultant value of a while condition is always FALSE.) This is equivalent
to:

(for (0) condition (0) code).

example: Set x = x + the incremented value of i while i < n.

(while
« i n)

(+= x (++ i))

Page 18
SCI Programming Language

;condition
;code

------------ -

repeat
(repeat code)

Continually execute the code until some condition in the code (a break) causes
the loop to be exited. This is equivalent to:

(while TRUE code) or (for (0) TRUE (0) code)

example: Set x = x + 2. Note that this will loop fore ver.

(repeat
(+= x 2) ;code

Supporting constructs tor iteration

break

breakit

(break [n])

Break out of n levels of loops. If n is not specified break out of the innermost
loop.

example: Repeat incrementing i until i > n.

(repeat
(++ i)
(if (> i n) (break))

(breakif expression [n])

If expression is not FALSE, break out of n levels of loops. If n is not specified,
break out of the innermost loop.

example: Repeat incrementing i until i > n.

(repeat
(++ i)
(breakif (> i n))

continue
(continue [n])

Loop back to the beginning of the nth level loop. If n is not specified, loop to the
beginning of the innermost loop.

Page 19
SCI Programming Language

return

contif

example: Set x = y / i unless i = O.

(for ((i = -5)) « i 5) ((++ i))
(if (== i 0) (continue))
(=x(/yi))

(contif e x pression [n))

If expression is not FALSE, loop back to the beginning of the nth level loop. If n
is not specified, loop to the beginning of the innermost loop.

example: Same as "continue" except using the logical NOT to test i.

(for ((= i -5)) « i 5) ((++ i))
(contif (not i))
(=x(/yi))

(return [expression))

The return statement returns control to the procedure which called the currently
executing procedure. If the optional expression is present, that value is returned as the
value of the current procedure. There is an implicit return at the end of all procedures,
and the value returned in that case is the value of the last expression evaluated. A
return from the main procedure of script 0 returns to the operating system.

example:

(return
(+ x k) ;optional expression

Page 20
SCI Programming Language

Proeedures

A proeedure is like a user-defined funetion or subroutine. Proeedures are ereated with the
proeedure eonstruet. Note that it is allowable for the proeedure to take no parameters and have
no automatie variables (optional terms are shown in braekets). Proeedure names are
traditionally initial eapitalized. "Code" in these examples represents any list of valid expressions:

(procedure (MyProc [pI p2 ... 1 [&tmp tl t2 ... 1)
code

This defines the proeedure "MyProe" with the parameters p1, p2, ete. and temporary variables t1 ,
t2, ete. (designated by the preeedent "&tmp"). These temporary variables disappear on exit from
the proeedure.

Temporary arrays are defined in the same way as loeal arrays. In the following example,
"myArray" is the name of an array with n elements. Note that braekets are required when
designating an array.

(procedure (MyProc &tmp [myArray nl)
code

Even though parameters are optional in a proeedure eonstruet, all proeedures have one inherent
parameter, the eompiler-defined variable arge (argument count). The argument count eontains
the total number of parameters passed to the proeedure. In the following proeedure ealls:

(MyProc 5 2 4)
(MyProc 1 3)
(MyProc 7)

;argc
;argc

;argc = 1

3
2

In the following example, arge is used to fail-safe the SetPosition proeedure in the event that
fewer than two parameters are passed.

(procedure (SetPosition x y)
(if arge

(= theX x)
(if (> arge 1)

(= theY y)

Following are several examples of proeedure eonstruets.

Ta square a number n:

(procedure (MySquare n)
(return (* n n))

Page 21

;if the arge is not zero, eontinue.

;if the arge is > 1, eontinue.

SCI Programming Language

The following procedure "MyMax" finds the maximum number in aseries of arbitrary numbers
passed to i1. The parameters for the variable p will be accessed as an array, biggest is the
variable containing the maximum, and i is the index into the parameter array p.

(procedure (MyMax p &tmp biggest i)
(for

((= i 0) (= biggest 0)) ;initialize i, biggest
« i arge) ;compare to total number of parameters passed.
((++ i)) ;re-initialize
(if (> [p i] biggest)

(= biggest [p i])

(return biggest)

Passing the following parameters to MyMax will return the value of 12:

(myMax 3 -4 -9 0 -2 7 12 4 3 5)

In order to use a procedure before it has been defined in a source file (for example, making a
call to MyMax before the actual definition of MyMax), the compiler must be told that the
procedure's name corresponds to a procedure, not an objec1. This is done with another form of
the procedure statement:

(procedure
ProcedureName1
ProcedureName2

This teils the compiler to compile code for procedure calls when it encounters the procedure
names, rather than code for send messages to an objec1.

Note that you may not use a parameter as a procedure variable if the caller did not pass i1. In
the following example, the caller passes the values a and b to the procedure. The value of c is
not passed and will therefore be undefined. For example:

(Times 5 7) ;passes two parameters to the Times procedure

(procedure (Times abc) ;procedure expects three parameters
(=c(*ab))
(return c) ;c will be undefined. The return will not be correc1.

In the previous example, c should be designated as a temporary value (&tmp c) or left out
altogether (return (* ab».

Page 22
SCI Programming Language

&rest

extern

public

&rest stands for all of the parameters not specified in the procedure or method. If a
procedure or method has a variable number of arguments and wants to pass them on to
another procedure or method, &rest teils the spin-off procedure to do all of them without
knowing just how many parameters there are. The following example uses the
procedure MySquare to square the maximum number in aseries, as determined by the
procedure MyMax:

(procedure (MySquare &tmp max)
(= max (MyMax &rest))
(return (* max max))

;no parameters passed to MySquare
;&rest passes parameters to MyMax

&rest can also be used to specify parameters starting at any point in the parameter list
of a procedure or method definition. Modifying the previous example, MySquare now
defines the first two parameters passed to it as "first" and "second." To include them in
the parameter list passed on to MyMax:

(procedure (MyS quare first second &tmp max)
(= max (MyMax (&rest first)))

(return (* max max))

;passes all parameters
;beginning with "first"

Calling a procedure in another script is another matter. Since there is no link phase in
the development cycle, one procedure cannot know the address of a procedure in a
different script. The extern statement allows a script to know where the external
procedure is:

(ex tern
ProcedureName scriptNumber entryNumber

This says that the procedure referred to by the symbol "ProcedureName" in this script is
to be found in script number "scriptNumber" at entry number "entryNumber" in the
script's dispatch table. kerneLsh and system.sh both use the extern statement to let all
other scripts know where their public procedures are.

The dispatch table for a script is defined by the public statement.

All procedures within a script which are to be accessed from outside the script must be
entered in the dispatch table for the script with the public statement:

(public
ProcedureName entryNumber

Page 23
SCI Programming Language

puts the procedure "ProcedureName" in the dispatch table at entry number
"entryNumber." The entries need not be in numeric order, nor do the numbers need to
be continuous (though if they are not continuous, the table will be larger than it needs to
be).

Page 24
SCI Programming Language

Files

Source files for the script compiler traditionally have the extension .sc. Header (include) files
traditionally have the extension .sh. Message editor header files traditionally have the extension
.shm. Source files may have any filename; two examples are banner.sc and castle.sc. The two
output files from the compilation will have the names number.scr and number.hep where
number is the script# (defined below) of the module. Following are other files (besides the
source file and any user-defined header files) which are involved in a compilation .

classdef
This file contains the information about the structure of the classes which have been
defined in the application . It is read automatically by the compiler and is rewritten by the
compiler after a successful compilation in order to keep it up to date.

selector
This file contains definitions of selectors which are used in object-oriented programming.
It is automatically included in a compile and, like classdef, is rewritten after a successful
compile. Any symbol in a properties or methods statement or in the selector position in
a send to an object is assumed to be a selector and is assigned a selector number
included in selector.

system.sh
This contains the definitions for interfacing with the various system classes and
procedures. It also contains the system global variable definitions and defines for
keycodes, script numbers, etc. It is automatically included in all compiles.

kernel.sh
This contains the definitions for interfacing with the kernel.

game.sh
This is the game-specific header file . It contains global variables, procedure
declarations, and definitions for an individual game. It is automatically included in the
compile after system.sh.

classes.txt
This is a text file produced by the compiler that is used by aBRIEF macro to browse the
SCI class system.

offsets.txt

994.voc

996.voc

This is a text file that contains a list of class-selector pairs for frequently used properties.
It is used by the compiler to produce 994.voc.

For each class-selector pair in offsets.txt, the compiler writes an entry to this file
containing the offset of that property in an SCI object. With this information, the
interpreter can access a frequently used property without going through the message­
passing mechanism. It is generated by the compiler when the -0 command line
parameter is used.

This is the class table. It specifies the number of the script files that contain each class.

997.voc
This file contains the names of selectors. It is only used by the debugger and in printing
error messages.

Page 25
SCI Programming Language

$$$sc.lck
This read-only file serves as a semaphore, indicating that a compile is occurring in the
current directory. This prevents two compiles from trying to do the same task
concurrently (updating the same classdef, for instance). $$$sc.lck is created at the
beginning of a compile and deleted at the end.

The following two SCI commands deal with source code organization:

script#

include

The script# command sets the script number of the output file.

(script# 4)

sets the output file names to 4.scr and 4.hep, regardless of the actual name of the
source file.

This includes a header file in the current source file at the current position.

(include "/sc/foo.sh") or (include /sc/foo.sh)

includes the file /sc/foo.sh. Include files may be nested as deeply as desired.

When compiling or including a file, the compiler first looks in the current directory. If it fails to
find it there, it next looks for the file in the directories specified in the environment variable
sinclude. This variable is just like the DOS path variable. The search directories are separated
by semicolons. To set the compiler to look for include files in f:/games/scilsystem and c:/include
if it doesn't find them in the current directory, add the line:

set sinclude=f:/games/sci/system;c:/include

to your autoexec.bat file.

Page 26
SCI Programming Language

Compiling SCI Code

The SCI compiler is invoked with the command:

sc filel [file2] [file3] [options]

Any number of file specifications may be entered on the command line, and a file specification
may include wild-card names.

Options

-a

-d

-D<str>

-g<num>

-I

-n

-0

-oout-dir

-s

-v

-w

-z

Abort compile if the file is already locked.

Include debugging information so that the debugger can display source code.

Create a command line define which has the same result as using the define
statement in a source file (except that spaces and some other characters are not
permitted).

Define maximum number of global or local variables. The default is 750.

Generate an assembly language code listing for the file with the original source
interspersed. This is useful when using the built-in debugger of SCI. When
compiling filename.sc, the list file is named filename.sl.

Turns off "auto-naming" of objects. As described in the appendix on object­
oriented programming, each object has a name property which is used to
represent the object textually. Unless the property is explicitly set, the compiler
will generate the value for this property automatically, using the object's symbol
string for the name. The object names, however, take up space. While they are
useful (almost vital) for debugging, if you're running out of memory in a room, it
might help to compile with the -n option to leave the names out.

Use offset.txt to generate 994.voc.

Set the directory for the output files to out-dir.

Displayamessage when a forward referenced selector is used.

Do not lock the class database.

Output words high-byte first (for the Macintosh).

Turn off optimization. Not a particularly useful option except for those of us who
must maintain the compiler.

Page 27
SCI Programming Language

Index

+.. 4
++ . 9
+= 9

. 4

. 9
-- . 9
* 4
*=. 9
/ 4
/= . 9
" " 5
"= 9
< 7
« 5
«= 9
<= 7
= 9
-- 7
> 7
>= 7
» 5
»= 9
I 5
1=.. 9

. 6
!= 8
$$$sc.lck. .. 26
994.voc. 25
996.voc. .. 25
997.voc. 25
& 5
&= 9
&rest .. 23
AND 8
arithmetic primitives 4
arrays, global. .. 11
arrays, local . 10
arrays, temporary . 21
assignment primitives . 9
Boolean primitives 7
break. .. 19
breakif 19
characters . 13
classdef .. 25
classes.txt . 25
comments .. 3
cond . 16
conditionals . 16
contif. .. 20
continue . 19
define 12, 14
enum. 14
extern. .. 23
for .. 18

Page 28
SCI Programming Language

