
 Script Classes for Adventure Games

 Author: Jeff Stephenson

 Date: 5 April 1988

 SIERRA CONFIDENTIAL

 Table of Contents

Introduction . 3

RootObj . 5

Object . 6

 Collection . 8

 List . 10

 Set . 11

 EventHandler .

 Inventory . 12

 Script . 13

 Timer . 15

 Feature .

 View . 17

 Prop . 20

 Actor . 22

 Ego . 26

 PicView . 27

 Cycle . 28

 Forward . 30

 Walk . 30

 Reverse . 30

 CycleTo . 31

 EndLoop . 31

 BegLoop . 31

 Motion . 32

 MoveTo . 33

 Wander . 33

 Follow . 33

 Chase . 34

 Jump .

 JumpTo .

 Orbit .

 Path .

 RelPath .

 Avoider . 35

 Event . 36

 User . 38

 Game . 39

 Locale .

 Region . 41

 Room . 43

 Timer . 46

 TimeOut

 InvItem . 47

 Block . 49

 Cage .

 Sound . 50

 StatusLine . 51

 File . 52

 Code . 53

Global Variables . 54

Index . 56

 Introduction

An interesting feature of object-oriented languages is that simply knowing

the syntax and the primitive procedures (kernel calls) of the language does

not help you all that much in the actual process of sitting down and

embodying an idea using the language. The basis of object oriented

programming is in the hierarchical class system -- the properties of the

classes, the methods which operate on them, and the inter-relationships of

the classes. Thus this document, which attempts to describe the class

system for the Script development system.

Note that describing the class system for Script is like trying to shoot a

moving target -- the classes are constantly changing, though the rate of

change does seem to be slowing down somewhat. As we gain experience, the

class hierarchy will stabilize, but until then keep your seatbelts fastened,

since the ride is likely to be a bit bumpy.

The most important principal to keep in mind when programming in an OOPL is

that classes should be embodiments of abstract concepts, not kludged code to

do something that you don't feel like thinking through. Purity of

programming and concept is very important in an OOPL. Since the structure

and methods of a class are inherited by all its subclasses, small changes

may have wide-ranging effects. On the positive side, a well thought-out

class system almost seems to program itself -- objects and classes which are

accurate representations of the world which they are supposed to model

behave logically in response their inputs. The programming process becomes

a matter of telling objects how to behave rather than writing masses of

complex code.

One rule of thumb is to not add a property or method to a class if it

doesn't logically belong there -- create a subclass instead. As an example,

consider the problem of moving a number of things around the screen in

unison. We might decide to represent this as a Collection of Actors (see

the class descriptions below) and move the Collection around the screen.

This, however, requires that we add positional properties and a move method

to the class Collection and write some fairly kludgy code to keep the actors

in the proper positional relationship. If we do this, however, all

Collections and subclasses of Collection carry around all this baggage,

which really has nothing to do with the concept of a group of things.

A better way to implement this would be to define a subclass of Collection,

say a Gang, which is a kind of Collection but with the positional and

movement aspects incorporated. This leaves the concept of a Collection

unsullied, but still leaves us with the problem of how to keep the Actors

positioned properly. But by calling this concept a Gang and thinking of it

in that respect rather than as just a Collection, it occurs to us that gangs

are often a collection of followers following a leader. So we add a leader

property to the Gang class, which will be the object ID of the Actor which

is to be the leader. Now moving the group around the screen is easy -- we

just move the leader and tell the followers (the elements of the Gang) to

follow him:

 (method (moveTo nX nY)

 (leader moveTo: nX nY)

 (elements eachElementDo: #setMotion: Follow leader)

)

We could even go on to further refine the Gang class by including code which

handles a Gang without a leader by having the followers wander aimlessly

about a point which is considered to be the position of the Gang.

The point here is that rather than mucking up the Collection class with a

lot of irrelevant code, we created a subclass of it with the desired extra

properties and methods. In doing so, we stopped thinking of it as just some

sort of abstract collection and started thinking of it as a gang, inspiring

the thought of adding a leader to the gang and opening the way to many

possibilities.

DON'T THINK OF CODE -- THINK OF CONCEPTS!

 The RootObj Class

A RootObj is the most fundamental object possible in the Script language --

it has an identity as an object, but that's it. It is defined in the

kernel, not in Script, and is the ultimate super-class of all objects.

Since it is such a minimal object, it is only used as a basis for those

objects in which memory size is a major consideration and which are hidden

away in other objects in such a way that the fuller identity given by making

them sub-classes of Object is not necessary.

In file: in the kernel

Inherits from: nothing

Inherited by: Object

 InvItem

Properties:

 species

 This is a pointer to the property dictionary for an object, which

 is contained in the defining class. Thus if two objects have

 equal species properties, they are both instances of the same

 class. Do not change this property, or the object will stop

 working.

 superClass

 This is a pointer to the method dictionary of the object's

 superclass, and is used to look up a method which is not defined

 locally. Don't change it, or the object will stop working.

 -info-

 This is esoteric bit-mapped information about the object. It is

 currently used to tell whether the object is a static instance or

 was created with new:.

 The Object Class

Class Object is the super-class of the majority of the classes in Script.

It defines the default behavior for these classes, ensuring that all objects

will respond to a certain basic set of messages.

In file: system.sc

Inherits from: RootObj

Inherited by: All classes

Properties:

 name

 This is a string representation of the name of the object or

 class. It is used by showSelf: to display the object. The

 compiler will use the symbol for an instance or class as its name

 unless name is explicitly set.

Methods:

 new:

 Returns the ID of a new instance of the class or object. This new

 instance has the same methods and property values as the parent.

 The property values can be changed, the methods cannot.

 init:

 Initializes the object. If the object is to show up on the

 screen (Views, Props, Actors and Egos), this is the message which

 will make the it show itself. The default does nothing.

 doit:

 Do your thing, whatever that may be. Sometimes this is sent when

 the object is selected, sometimes (as for Actors) it is sent for

 each animation cycle. The default does nothing.

 dispose:

 Dispose of the object. If the object was created using new:, this

 reclaims the memory occupied by that object. In this case it is

 an error to refer to the object ID being disposed of once the

 dispose: message has been sent. Subclasses of Object should make

 sure that they dispose of any objects which they created before

 doing a (super dispose:).

 showStr: where

 Format a string describing the object at the storage pointed to by

 where. The default string is the object name.

 showSelf:

 Display this object in a meaningful way. This is primarily used

 for debugging, in order to find out which objects are present.

 The default is to print the string produced by showStr:.

 perform: code [args...]

 Execute code. Code must be an object of class Code with a doit:

 method whose first argument will refer to the object which is to

 perform the code. Thus, one way to implement showSelf: would be

 to create the Code object

 (instance showMe of Code

 (method (doit theObj)

 (Print (theObj name?))

)

)

 You could then make the object foo show itself even if it did not

 have a showSelf: method by writing

 (foo perform: showMe)

 Up to four arguments (besides the Code object ID) may be passed to

 perform:.

 myself:

 Returns the object ID of the receiver. This is useful as the last

 in a series of messages to an object to force the entire send to

 return the ID of the object. For example, if you wish to add a

 newly created and initialized Actor to a List, you could write

 (list add:

 ((Actor new:)

 posn:100 100

 view:5

 setCycle: EndLoop

 myself:

)

)

 understands: selector

 Returns TRUE if the object has a method corresponding to selector,

 FALSE otherwise.

 The Collection Class

The Collection class provides the ability to manipulate collections of

objects. Objects which belong to a Collection are said to be elements or

members of it. The Collection class has no particular order defined for its

elements, so it should not be used for situations in which the objects

should be ordered -- use a List instead.

In file: system.sc

Inherits from: Object

Inherited by: List

 Set

 EventHandler

Properties:

 elements

 A pointer to a kernel list (kList) of the elements of the

 Collection.

 size

 The number of elements in the collection.

Methods:

 add: element [elements ...]

 Add elements to the Collection.

 delete: element [elements ...]

 Delete elements from the Collection.

 eachElementDo: action [args...]

 Send the message action [args...] to each element of the

 Collection. There may be from zero to four arguments (args).

 firstTrue: action [args...]

 Send the message action [args...] to each element of the

 collection in succession. When an object replies a non-zero value

 to the message, firstTrue: returns the object ID of that object

 and does not send the message to any more objects. Up to four

 arguments are allowed.

 allTrue: action [args...]

 Returns TRUE if all objects in the collection reply a non-zero

 value to the message action [args...], FALSE otherwise. Up to

 four arguments are allowed.

 contains: anObject

 Returns TRUE if anObject is an element of the collection, FALSE

 otherwise.

 isEmpty:

 Returns TRUE if the collection has no elements, FALSE otherwise.

 first: (private)

 Returns a pointer to the kernel node kNode which has the 'first'

 object in the collection as its value. The object can be obtained

 with the kernel call (NodeValue kNode). Note that since there is

 no order associated with a collection, the object which will be

 returned by first is unspecified.

 next: kNode (private)

 Returns a pointer to the kNode following kNode. As in first:, the

 object may be obtained with (NodeValue kNode). Also as in first:,

 the lack of ordering in a Collection means that the object which

 will be returned is unspecified. It is guaranteed, however, that

 it will not be an object which has been returned since the most

 recent call to first: (unless the object has been added to the

 Collection more than once -- see Set). If all elements in the

 Collection have been returned since the last call to first:, 0 is

 returned.

 The List Class

A List is just a Collection which has a specified order to its elements.

In file: system.sc

Inherits from: Collection

Inherited by: Inventory

 Set

Properties:

Methods:

 add: element [element ...]

 Adds elements to the end of the list in the order specified.

 first:

 Returns the kNode of the first element in the List.

 next: kNode

 Returns the kNode of the element which follows kNode in the List,

 0 if kNode is the end of the List.

 at: n

 Returns the element (not the kNode) at position n in the List.

 last:

 Returns the kNode of the last element in the List.

 prev: kNode

 Returns the kNode of the element preceding kNode in the List, 0

 if kNode is the first element of the List.

 addToFront: element [element ...]

 Add elements to the beginning of the List.

 addToEnd: element [element ...]

 Add elements to the end of the List.

 indexOf: element

 Return the index of element in the list. If the element is not in

 the list, return -1.

 The Set Class

A Set is a kind of List which does not contain duplicate elements: adding an

object to a Set which already contains the object does not change the Set.

In file: system.sc

Inherits from: Collection

Inherited by: EventHandler

Properties:

Methods:

 add: element [element ...]

 Adds each element to the set only if it is not already a member

 of the set.

 The EventHandler Class

The EventHandler is a kind of Set that has a handleEvent method. The

handleEvent method for this Class invokes the handleEvent method for each

of its elements. The return is TRUE if one of the elements claimed the event,

otherwise FALSE.

The cast of an adventure game is an EventHandler consisting of Views, Props,

Actors, and Ego. The features list is also an EventHandler consisting of

Features and (possibly) PicViews.

(see class descriptions below).

In file: system.sc

Inherits from: Set

Inherited by: none

Properties:

Methods:

 handleEvent: event

 Passes on the handleEvent message to each of its members

 and returns TRUE if one of its elements claim the event,

 otherwise FALSE.

 The Inventory Class

The Inventory class is a List of all the objects (see the InvItem class)

which may be collected by ego in a game. There are two steps to setting up

the inventory.

First, in the main header file for the game (typically game.sh), create an

enum statement listing all the symbols which you will use to refer to the

inventory items. In order to avoid name conflicts, these are traditionally

the names preceded by an 'i': a rock might be referred to as "iRock".

Next, in the main game file (the file in which you define your instance of

Game), you create the instances of InvItem which are the inventory items.

These are added to the Inventory (whose ID is in the global variable

inventory) in the init: of the game after the (super init:). The InvItems

must be added to the inventory in the order in which they are listed in the

enum statement above (a block copy works wonders...).

From now on you may get the object ID of any InvItem with the at: method of

Inventory by using the symbol for the item defined in the enum statement:

If you wanted to move the rock from its current position to room number 15,

you could write

 ((inventory at:iRock) moveTo:15)

The get:, put:, and has: methods of the Ego class use the enumed symbols

rather than the object ID. Thus, to see if ego has the rock, you would

write

 (ego has:iRock)

In file: invent.sc

Inherits from: List

Inherited by: none

Methods:

 showSelf: whom

 Display the items possessed by whom. This is done by putting up a

 window with all currently possessed items in it. By clicking the

 mouse on an item, the user may see a picture of it and receive a

 more detailed description of it. Ego's possessions are done with

 (inventory showSelf:ego)

 saidMe:

 Return the object ID of the first item in the inventory whose said

 property matches what the user typed.

 The Script Class

A Script is a kind of Object which has a state, methods to change that

state, and code to execute when the state changes. It is used to model a

sequence of actions which should be executed by an object, such as an Actor

walking to the base of some stairs, walking up the stairs, and opening a

door.

In file: system.sc

Inherits from: Object

Inherited by: none

Properties:

 client

 The object (a Prop, Actor, Ego, Room, etc.) whose Script this is.

 Used to communicate with the Script's client.

 state

 The state of the Script.

 start

 The desired initial state of the Script.

 timer

 The ID of a timer which has been set to cue: the Script after a

 certain interval.

 register

 A property that allows you to store what ever you want.

 This is very useful in a Script since a temporary variable

 will not hold its value longer that the life of one method,

 thus without this property the only way to keep a value from

 state to state through a Script would have been a local or

 global variable. If more than one value needs to be stored

 the register property could be used as a pointer to a Collection,

 List or Set.

 caller

 The is where the Script keeps the ID of the object to cue: upon

 completion.

 seconds

 This contains the number of seconds until a state change will

 occur. This is generally set in one of the scripts states to

 signal the number of seconds until a state change should occur.

 cycles

 This contains the number of animation cycles until a state

 change will occur. This is generally set in one of the scripts

 states to signal the number of animation cycles until a state

 change should occur.

 script

 The ID of this script's script if it has one. This property

 is filled by the setScript method and should not be set directly.

Methods:

 init: [client]

 Initialize the Script entering the initial state by doing a

 (self changeState:start). Set the Script's client to client if

 present.

 changeState: newState

 Change the Script's state to newState. This method is where to

 put the code to be executed on state transitions. It should store

 the new state in the state property, then switch to the

 appropriate code based on the new state:

 (method (changeState newState)

 (switch (= state newState)

 transition code...

)

)

 cue:

 Do a changeState: to the next state. Default is to invoke

 (self changeState:(+ state 1))

 handleEvent: event

 This method of an active script is called whenever there is an

 input event (see class Event). If (event claimed:) is TRUE,

 someone else has already responded to the event. Whether or not

 someone else has responded, if the Script responds to the event it

 should claim it by doing an (event claimed:TRUE). This method can

 be used to add additional responses to an Actor ,Prop etc.

 setScript: newScript whoCares register

 A Script can also have a script. This adds subroutine style

 capability to scripts. If the optional parameter whoCares is

 present the newScript will cue: whoCares and pass on the contents

 its register when it is disposed (i.e. (client cue:register)).

 In this case, the last state of the newScript should dispose of

 itself i.e. (self dispose:) or (client setScript:0). The third

 parameter (if present) sets the newScript's register property.

 If a Script has a newScript the newScript will receive all the

 events the the parenet script receives.

 The Timer Class

The Timer class implements the concept of an alarm clock, allowing you to

create an object which will cue: another object after a certain interval.

Timers dispose: of themselves after cue:ing their client, and always check

to see if their client is still present before cue:ing it.

An important concept relating to Timers is that of game time versus real

time. Real time is just what it sounds like -- real time in real seconds.

Game time is time adjusted to the performance of the user's computer -- it

is the same as real time on a computer which is able to keep up with the

animation demands of the game, but slows down in proportion to the speed of

the user's computer when it is not able to keep up.

An example may help clarify this. Say that you're writing a game in which

ego has only five seconds to leave a room before a bomb blows up. If you

set this time interval as real time, it may give you just enough time to

get out on your nice fast 286 or 386 machine. But on a Tandy 1000, where it

takes 1/5th of a second to complete an animation cycle instead of the

standard 1/10th of a second, the user will only be able to go half as far

and thus has no chance of leaving the room before the bomb blows. The time

interval should really have been set in game time, which would have given

the user the same number of animation cycles to get out.

As a rule of thumb, time intervals which are meant to be a constraint on how

long the user has to do something should be set in game time, whereas time

intervals which are just meant to be a delay between two events should be

real time. A user with a slow machine has no desire to watch a banner

screen twice as long as one with a fast machine.

In file: system.sc

Inherits from: Object

Inherited by: none

Properties:

 client

 The object which the Timer will cue: at the end of its interval.

 cycleCnt

 The number of animation cycles remaining until the Timer cue:s its

 client. This is used by Timers which are timing either animation

 cycles or game time.

 seconds

 The number of seconds remaining until the Timer cue:s its client.

 This is used by Timers which are timing real time.

 lastTime

 Private. Used by a timer timing real time.

Methods:

 set: who nSec [nMin [nHrs]]

 Create a timer to cue: who after a specified interval in game

 time. Set it to cue: in nSec seconds. nMin and nHrs are

 optional minutes and hours until the cue:.

 setReal: who nSec [nMin [nHrs]]

 Like set:, but the time interval is in real time.

 setCycle: who cycles

 Create a timer to cue: who after cycles animation cycles.

 delete:

 Private. Does the actual deletion of a Timer. You should use

 dispose:, which sets the Timer up for a delete: by the system

 later on.

 The Feature Class

The Feature class is simply a location on the the screen that has a

handleEvent method. This is used when an object that should have a

response to events is drawn into the picture. If the global variable

useSortedFeatures is TRUE all elements of the cast and features

will receive the event in the order of their proximity to ego.

In file: actor.sc

Inherits from: Object

Inherited by: View

 PicView

Properties:

 x

 y

 z The position on the screen.

 The x property should be set to the x coordinate of the object

 on the screen. The y property should be set to the y coordinate

 of the objects projection onto the ground if it is elevated,

 otherwise it's y coordinate on the screen. If the object is

 elevated above the ground then the amount of elevation should

 be placed in the z property.

Methods:

 handleEvent:event

 All elements of the EventHandler features receive the handleEvent

 message. If the feature is to receive events it should be added to

 the current rooms features list via the rooms setFeatures method.

 (i.e.) (curRoom setFeature:myFeature)

 This is generally done in the init method of a room. If the global

 variable useSortedFeatures is TRUE all elements of the features list

 and the cast will receive the handleEvent message in the order of

 their proximity to ego.

 The View Class

The View class contains the minimum functionality to put a visible object on

the screen in a reversible manner. Thus, as a View, a particular view,

loop, and cel may be drawn on the screen and later erased. A View, however

neither cycles (like a Prop) nor moves (like an Actor).

In file: actor.sc

Inherits from: Feature

Inherited by: Prop

Properties:

 x

 y

 The position of the View on the screen.

 z

 The Views elevation above the ground.

 view

 The number of the View's current view.

 loop

 The number of the View's current loop.

 cel

 The number of the View's current cel.

 priority

 The visual priority of the View.

 underBits

 A handle to the storage for saving the background of the View.

 Don't monkey with this.

 nsTop

 nsLeft

 nsBottom

 nsRight

 The coordinates of the top, bottom, left, and right edges of the

 rectangle which encloses the current (nowSeen) cel of the View.

 Don't monkey with this.

 lsTop

 lsLeft

 lsBottom

 lsRight

 The lastSeen rectangle for the View -- its nowSeen rectangle from

 the previous animation cycle. Once again, do not touch.

 brTop

 brLeft

 brBottom

 brRight

 This is the base rectangle (or baseRect) -- the rectangle which is

 considered to be the base of the View for detecting collisions

 with it. This you can monkey with. The default for the base of

 a View is a rectangle whose left and right sides are the sides of

 the nowSeen rectangle, and whose bottom and top are the y

 coordinate of the View's origin.

 signal

 A bit-mapped word for communicating with the kernel animation

 routines and various methods. Handles start- and stop- updating,

 fixed priorities, etc. This property should not generally be

 manipulated directly -- the various methods (setPri:, setCel:,

 stopUpd:, etc.) should be used instead.

Methods:

 init:

 Sets the baseRect of the View and adds it to the cast so that it

 will be drawn on the screen at its current position.

 posn: x y z

 Position the View at (x, y, z).

 Note that the Actual x,y screen coordinates of the object will

 be x, (y - z). Thus leaving z set to zero will give the

 traditional x y positioning.

 stopUpd:

 This method sets the signal property to indicate to the

 interpreter that the image of the object on the screen is not to

 be updated anymore. This is done to speed up program execution by

 reducing the number of things to be animated.

 startUpd:

 This undoes a previous stopUpd: of an View.

 forceUpd:

 This does a one-animation-cycle startUpd: of the View, making a

 change in the View's view, loop, cel, or position visible, but

 leaving it in a stopUpd: condition if it was so before.

 setPri: [newPri]

 This is used to set the priority of a View, based on the value of

 newPri. Normally, a View is assigned a visual priority by the

 kernel based on its y position on the screen. If a call to

 setPri: is made with no newPri specified, the priority is fixed at

 the current priority of the View. If a value of newPri is

 specified, the priority is set to that value. A newPri of -1 is

 used to undo a setPri:, returning control of the priority to the

 kernel.

 setCel: newCel

 Sets the cel of the View to newCel.

 setLoop: newLoop

 Sets the loop of the View to newLoop.

 ignoreActors: [n]

 If n is absent or TRUE, this allows the View's baseRect to

 intersect that of Actors. If n is FALSE, the View's baseRect may

 not intersect that of any Actors -- the Actor will collide with it

 (unless the Actor has itself done an ignoreActors:). The default

 state of a View is equivalent to ignoreActors:FALSE, i.e. an Actor

 may not intersect its baseRect.

 show:

 Place a view that has been hidden with hide: back on th screen.

 hide:

 Remove the View from the screen, but not from the cast.

 dispose:

 Tell the kernel to remove the View from the screen. Also set a

 bit in signal to tell the main animation loop to remove this View

 from the cast after animation has been completed.

 delete:

 If the proper bit is set in signal, remove this View from the cast

 and do a (super dispose:).

 showStr: where

 Format a string describing the View in the storage pointed to by

 where. This method gives classes inheriting from View the

 ability to inherit the View part of showSelf: rather than

 reimplement it.

 check: other

 This method is used to check for intersection of the baseRect with

 other. It returns TRUE if the object does not intersect anything.

 The method for a View or Prop always returns TRUE.

 handleEvent: event

 All elements of the cast get the handleEvent: message whenever a

 non-direction event is produced. Only the User's alterEgo is sent

 direction events.

 addToPic:

 Add this View to the picture in an irreversible manner, then

 delete the View. The Views important properties are copied into a

 PicView object created by the system, and the View is then

 disposed of. Note that this meens that all methods that have been

 redefined for the View are lost (including, but not limited to the

 handleEvent method). Thus if you wish to give an addToPic a

 specialized handleEvent method a PicView object should be used

 instead.

 The Prop Class

Props are Views which can cycle but not move.

In file: actor.sc

Inherits from: View

Inherited by: Actor

Properties:

 cycleSpeed

 The number of animation cycles between successive cels of the

 Prop. Normally this is 0, meaning that the Prop cycles each

 animation cycle. If you want the Prop to cycle more slowly, set

 this to a larger value.

 cycler

 This is the object ID of an instance of a Cycle class which

 determines the next cel to display for the Prop. Don't modify it

 directly, but use the setCycle: method to install an instance of

 one of the cycling classes. The object pointed to by this

 property is sent the message (cycler doit:) by the Prop each

 animation cycle.

 script

 The object ID of a Script associated with a Prop. If a Prop has

 a script, it will be called with (script doit: self) by the doit:

 method of the Prop each animation cycle.

 timer

 The object ID of any timer which is set to cue: the Prop.

Methods:

 doit:

 If the Prop has a script, send it the message doit: self. If the

 Prop has a cycler, send it the message doit:.

 cue: [newState]

 If the Prop has a script and newState is absent, cue: the script.

 If newState is present, execute (script changeState:newState).

 setScript: script

 Sets a Prop's script to script and initializes the script. Doing

 a setScript:0 disposes any current script without installing a new

 one.

 setCel: [newCel]

 Normally, the cel is set by the code pointed to by cycler.

 Sending the setCel: message with no newCel specified overrides

 cycler and fixes the cel at its current value. Sending a message

 with a value of newCel fixes the cel at that value. A newCel of

 -1 returns control to cycler.

 setCycle: cycle [caller]

 Sets the Prop's cycler property to an instance of a Cycle class

 deleting any former instance. Doing a setCycle:0 disposes any

 current cycle class without installing a new one. The optional

 caller argument may be provided for Cycle classes which terminate,

 in which case the caller will be cue:ed when the Cycle terminates.

 The Actor Class

The Actor class is the embodiment of an animated object.

In file: actor.sc

Inherits from: Prop

Inherited by: Ego

Properties:

 xLast

 yLast

 The coordinates of the Actor's previous position.

 xStep

 yStep

 The x and y step sizes for the Actor. Default is (= xStep 3) and

 (= yStep 2).

 heading

 The compass direction in which the Actor is headed. North (toward

 the top of the screen) is 0, south 180.

 moveSpeed

 The number of animation cycles between motions of the Actor.

 Normally this is 0, meaning that the Actor moves at each

 animation cycle. If you want the Actor to move more slowly, set

 this to a larger value. By playing with this and cycleSpeed, many

 strange effects may be discovered.

 illegalBits

 A bit-mapped word which specifies which controls an Actor CANNOT

 be on. The low bit ($0001) corresponds to control 0 and the high

 bit ($8000) to control 15. By convention, control 0 is generally

 accessible to all Actors, whereas control 15 is off-limits to all

 Actors -- thus, the default value of illegalBits is $8000.

 baseSetter

 The object ID of an instance of BaseSetter which is used to

 compute the base rectangle of the Actor. The default for the base

 of an Actor is a rectangle whose left and right sides are the

 sides of the nowSeen rectangle, whose bottom is the y coordinate

 of the Actor's origin, and whose top is the Actor's yStep above

 the bottom. This default is used if baseSetter is 0.

 mover

 The ID of an instance of a Motion class which is used to

 determine an Actor's path of motion. Don't modify this directly,

 but use the setMotion: method to set the type of motion to be

 executed by the Actor. The code pointed to by this property will

 be invoked with (mover doit: self) by the Actor in each animation

 cycle.

 looper

 The object ID of an instance of class Code which sets the

 Actor's loop based on the direction in which it is headed. The

 code is called with (looper doit: self theAngle) by the Actor

 during the initialization period of any setMotion:. It uses the

 current position of the Actor and the direction in which the Actor

 is heading (theAngle) to determine which loop to display. The

 default, which gets installed during the init: phase of an Actor,

 will handle virtually every case you'll encounter.

 viewer

 The object ID of an instance of class Code which sets the Actor's

 view. This is used, for example, when an Actor should wade or

 swim when on certain controls. The code pointed to by viewer is

 called with (viewer doit: self) and can test for the Actor being

 on a control and set the view accordingly.

 avoider

 The object ID of an instance of class Avoider. If a moving Actor

 collides with something (control in the picture, another Actor,

 etc.) which prevents it from moving, the avoider attempts to find

 a way around it.

Methods:

 init:

 Does the usual setup for a Prop, sets looper to DirLoop, and sets

 avoider to an instance of class Avoider for all but ego.

 doit:

 If an Actor has any of the following, it invokes them in order: a

 script, a viewer, an avoider or mover (the avoider, if present

 will call the mover), and a cycler.

 setLoop: [newLoop]:

 Normally, an Actor's loop is set by invoking the looper method,

 which does so based on the Actor's direction. Sending the

 setLoop: message with no argument fixes the loop at its current

 value. If newLoop is present, the loop is set to its value. If

 the newLoop is -1, loop determination is returned to the looper

 method.

 ignoreHorizon: [n]

 If n is absent or TRUE, this allows the Actor to be above the

 current Room's horizon. If n is FALSE, the Actor will not be

 allowed to go above the horizon of the current Room and will be

 repositioned to the horizon if an attempt is made to position it

 there. The default state of an Actor is equivalent to

 ignoreHorizon:FALSE.

 setMotion: motion [caller]

 Sets the Actor's motion property to an instance of a Motion class,

 deleting any former instance. Doing a setMotion:0 disposes any

 current motion without installing a new one. The optional caller

 argument is the object to be cue:ed when the motion is completed.

 setAvoider: avoider

 Set the Actor's Avoider to avoider. To remove an Avoider from the

 Actor, do a setAvoider:0.

 isStopped:

 Return TRUE if the Actor is in the same position as it was during

 the previous animation cycle, FALSE otherwise.

 isBlocked:

 Returns TRUE if the Actor tried to move, but was unable to because

 of something blocking it. If this is TRUE, the avoider will

 generally be invoked.

 canBeHere:

 Return TRUE if the Actor can be in its current position, FALSE

 otherwise. This checks to see whether the Actor's baseRect is on

 any illegal controls (specified by illegalBits), whether it has

 collided with a View, Prop, Actor or Ego, and whether it has

 collided with one of the Room's Blocks. In any of these

 cases, FALSE will be returned.

 findPosn:

 Reposition the Actor until canBeHere: returns TRUE. This is

 called whenever canBeHere: returns FALSE during animation. It

 searches in concentric rectangles outward from the Actor's

 position for a legal position.

 check: other

 Check to see if the Actor's baseRect intersects that of other.

 Return TRUE if it does not, indicating that the Actor has not

 collided with other.

 distanceTo: anObject

 Returns the distance (in pixels) to anObject (which had better

 have x and y properties). [Note: this is the real distance, not

 the kludge used in the previous interpreter. Because this uses

 the square-root function, it is slow -- don't use it 100 times per

 animation cycle, or you'll notice a degradation in performance.]

 inRect: left top right bottom

 Returns TRUE if the Actor's x and y are within the bounding

 rectangle, FALSE otherwise.

 onControl: [origin]

 Returns a bit-mapped word (mapped like the illegalBits property)

 indicating which controls the baseRect of the object encloses.

 If the optional origin argument is used (just use the word

 "origin"), the control under the x, y coordinate of the object is

 returned.

 The Ego Class

The Ego class is the class of Actors which can be controlled by a User.

In file: actor.sc

Inherits from: Actor

Inherited by: none

Properties:

 prevDirKey

 The key pressed by the User to start the Ego moving in its current

 direction. This property is needed to implement the "press the

 same key a second time to stop" control of an Ego, and set to -1

 when a joystick or mouse starts the motion.

 edgeHit

 This property is set to the edge of the screen which the Ego has

 moved off of, or to 0 if the Ego is still on the screen. The

 edges are NORTH, SOUTH, EAST, and WEST.

Methods:

 init:

 Does the standard Actor init:, then a (self setCycle:Walk).

 doit:

 This just passes the doit: message along to the Actor doit:, then

 sets edgeHit based on where the Ego is on the screen.

 get: item [item ...]

 Make the Ego the owner of items.

 put: item [where]

 Assuming that the Ego is the current owner of item, if where is

 specified, it is made the owner of item. Otherwise, the item is

 put in "limbo" (equivalent to a where of -1).

 has: item

 Return TRUE if the Ego is the current owner of item, otherwise

 FALSE.

 The PicView Class

Objects of class PicView keep information on Views which have been added to

the picture with addToPic: so that they will be present in a restored game.

In order to use the PicView class explicitly it must be added to the

addToPics List and the addToPics doit method must be invoked.

 (i.e.

 (instance myPicView of PicView

 (properties

 view vMyView

 x 160

 y 100

 z 10

)

)

 and in the rooms init method

 (addToPics

 add: myPicView,

 doit:

)

)

In file: actor.sc

Inherits from: Feature

Inherited by: none

Properties:

 view

 loop

 cel

 x

 y

 z

 priority

 signal

 The values of the corresponding properties in the View which was

 the progenitor of this PicView.

Methods:

 The Cycling Classes

The Cycle class is the basic class which implements cycling behavior in

Actor and its sub-classes. Sub-classes of Cycle implement specific cycling

behavior.

 Cycle

In file: motion.sc

Inherits from: Code

Inherited by: Forward

 Reverse

 CycleTo

Properties:

 caller

 The object to be cue:ed when the Cycle completes.

 client

 The Prop, Actor, etc. which is being cycled by an instance of

 Cycle.

 cycleDir

 The direction in which the client's cels are to be cycled.

 1 forward (cel numbers should increase)

 -1 backward (cel numbers should decrease)

 cycleCnt

 The number of animation cycles since the current cel of the client

 was displayed. When this equals the cycleSpeed of the client, the

 nextCel: method is invoked.

Methods:

 init:

 Do any necessary initialization of the Cycle class and ensure that

 the client is updating.

 doit:

 Called by the client as doit: self, this method sets the cel of

 the client to the appropriate value based on the particular Cycle

 class.

 nextCel:

 Used by the doit: method to move the cel number in the direction

 indicated by cycleDir.

 cycleDone:

 This is invoked when the client's cel reaches a destination cel.

 If the Cycle class is one of the cyclic ones, this just wraps the

 cel to either the beginning or end of the current loop. If it is

 a terminating Cycle class, this cue:s the caller.

 Forward

Cycles an Actor through its cels in the 'normal' order -- from 0 through the

end of the loop and back to 0. Set with (actor setCycle:Forward).

In file: motion.sc

Inherits from: Cycle

Inherited by: Walk

 Walk

This is a Forward cycle type which only cycles an Actor when the Actor is

moving. Set with (actor setCycle:Walk).

In file: motion.sc

Inherits from: Forward

Inherited by: none

 Reverse

Cycles an Actor through its cels in the reverse order of that in Forward,

i.e. from the highest cel number to 0 and then repeating. Set with

(actor setCycle:Reverse).

In file: motion.sc

Inherits from: Cycle

Inherited by: none

 CycleTo

This class allows you to cycle to an arbitrary cel and stop. It is set by

(actor setCycle:CycleTo toCel direction [caller]).

In file: motion.sc

Inherits from: Cycle

Inherited by: EndLoop

 BegLoop

Properties:

 endCel

 The number of the cel at which the cycling is to complete.

 EndLoop

This sub-class of CycleTo advances the cel of an Actor from the current cel

to the cel which is the end of the current loop for the Actor, then stops

and cue:s its caller (if it has one). Set with

(actor setCycle:EndLoop [caller]).

In file: motion.sc

Inherits from: CycleTo

Inherited by: none

 BegLoop

This sub-class of CycleTo decrements the cel number from its current value

to 0, then stops and cue:s its caller, if any. Set with

(actor setCycle:BegLoop [caller]).

In file: motion.sc

Inherits from: CycleTo

Inherited by: none

 The Motion Classes

The sub-classes of class Motion implement the various kinds of motion which

Actors can execute.

 Motion

The Motion class is the basis for all the specialized motions. If a caller

is specified in the setMotion: for a motion, it will be notified of the

motion's completion by being sent the cue: message.

In file: motion.sc

Inherits from: Object

Inherited by: MoveTo

 Wander

 Chase

 Follow

 Jump

 Orbit

 Path

Properties:

 x

 y

 The coordinates towards which the Actor is moving.

 client

 The Actor being moved by the instance of motion.

 caller

 The object to cue: when the motion is complete.

 dx

 dy

 b-moveCnt

 b-i1

 b-i2

 b-di

 b-xAxis

 b-incr

 These properties are used internally by the modified Bresenham

 line algorithm which moves the Actors.

Methods:

 moveDone:

 Executed when the motion completes or is blocked. Cue:s the

 caller, if there was one, and dispose:s of the motion class.

 MoveTo

The MoveTo class just moves an object to a particular position. An Actor is

moved to a position with (actor setMotion: MoveTo x y [caller]).

In file: motion.sc

Inherits from: Motion

Inherited by: none

 Wander

The Wander motion class implements a random wander for Actors. It is

invoked for an Actor by (actor setMotion: Wander [distance]) where the

optional argument, distance, is the maximum distance of a leg of the wander

(default is 20 pixels). This motion never completes -- the Actor will keep

wandering until a new motion type is set.

In file: motion.sc

Inherits from: Motion

Inherited by: none

Properties:

 distance

 The maximum distance to be wandered on a given leg of the wander.

 Follow

This class is for making one Actor follow another. It is invoked for an

Actor with (actor setMotion: Follow anotherActor [distance]), where

anotherActor is the Actor to be followed and the optional distance specifies

how closely to follow. If actor is further from anotherActor than distance,

it will start moving towards anotherActor. Otherwise it will stop moving.

The default distance is 15 pixels. As for Wander, this motion never

completes.

In file: motion.sc

Inherits from: Motion

Inherited by: none

Properties:

 who

 The ID of the Actor being followed.

 distance

 The distance to try and maintain from the Actor specified by who.

 Chase

This class implements the concept of trying to catch another Actor. It is

invoked with (actor setMotion: Chase anotherActor distance [caller]). As in

Follow, anotherActor is the Actor to chase. Distance is the distance from

anotherActor at which it is considered to be caught. When anotherActor has

been caught, caller is cue:ed.

In file: motion.sc

Inherits from: Motion

Inherited by: none

Properties:

 who

 The ID of the Actor being chased.

 distance

 The distance from who at which who is considered caught.

 Jump

This class simulates motion under a gravitational field. It is useful

to make an Actor simultate a falling motion. The fall is straight

down by default. This simulates, for example, falling off of a cliff.

A horizontal gravitation can also be simulated by setting the gx

property.

In file: jump.sc

Inherits from: Motion

Inherited by: JumpTo

Properties

 x

 x coord of finish. This property is set by the init method

 to reflect to clients velocity.

 y

 y coord of finish. This property is also set internally.

 gx

 gravitational acceleration in pixels/(animation cycle)**2.

 The default is no horizontal gravity, or 0.

 gy

 gravitational acceleration in pixels/(animation cycle)**2.

 This is set according to how intense a gravitation field

 you wish to have simulated. The default is 3 pixels per

 (animation cycle)**2, so after 1 cycle the Actor would

 be moving 3 pixels/animation cycle 6 after 2 cycles etc.

 xStep

 horizontal step size. Used by Jump to calculate next position.

 yStep

 vertical step size. Used by Jump to calculate next position.

 signal

 save area for client's signal bits. Don't set this property.

 illegalBits

 save area for illegal bits of client. Don't set this property.

 The following two properties, when true, indicate that we are to check

 for motion completion only after the apogee of the motion. This is

 necessary if we are to be able to jump onto things. Set these to

 FALSE if you do NOT want this behavior.

 WaitApogeeX TRUE

 waitApogeeY TRUE

 setTest

 private -- set up the jump completion test.

 JumpTo

This class sets up a Jump which will reach a certain x,y position.

The kernel call (SetJump) does this in order to use long integer

arithmetic. The Motion can the cue: a caller to signal then completion

of the jump.

In file: jump.sc

Inherits from: Jump

Inherited by: none

Methods

 init

 This method is called by the Actors setMotion method.

 a JumpTo is initiated by,

 (actorName setMotion: JumpTo x y whoCares)

 This will make an Actor jump to the coordinates x y, and then

 cue whoCares.

 Orbit

This class sets up an elliptical path for an Actor to follow.

This allows the simulation of an object orbiting around another

object. This mover takes into account the global variable perspective.

In file: orbit.sc

Inherits from: Motion

Inherited by: none

Properties

 centerObj

 The object (Feature View PicView Prop or Actor) to orbit

 around.

 radius

 The radius of the orbit along its major axis (the widest part).

 xTilt

 The horizontal tilt of ellipse. 0 would be circular and

 90 would be edge on.

 yTilt

 The horizontal tilt of ellipse. 0 would be circular and

 90 would be edge on.

 angleStep

 Angle degree increment per animation cycle.

 winding

 The direction of the orbit. clockwise=1 counterclockwise=-1

 curAngle

 Where the Actor will be along the Orbit. 0=north, 90=east etc.

Methods

 init

 This method is called by the Actors setMotion method.

 a JumpTo is initiated by,

 (anActor setMotion:

 Orbit ;class Orbit or an instance of it

 theCtrObj ;some object with x and y properties

 theRadius ;of the orbit

 theXTilt ;counterclockwise from x-axis in degrees

 theYTilt ;same from y-axis

 theStep ;in degrees, default is 10

 theWinding ;clockwise=1 counterclockwise=-1

 theAngle ;0=north, etc.

)

 Path

This class gives the Actor a Path to follow and allows cue'ing of an object

at the intermediate points as well as at the end of the path. It requires

less memory than a Script and is also easier to use. The points of the Path

are specified in a local array.

In file: path.sc

Inherits from: MoveTo

Inherited by: RelPath

Properties

 intermediate

 Object to cue at intermediate endpoints.

 value

 index into path array

Methods

 at

 Returns the nth element of control array. This method must be

 redefined to point to the users path array.

 next

 Move to next point in path. This method is used internally.

 atEnd

 Returns TRUE if at the end of the path.

 This method is used internally.

 Example:

 To create a square Path (assuming that ego is positioned at 100,100)

 we do the following:

 (local

 sPath = [

 100 60

 160 60

 160 100

 100 100

 PATHEND

]

)

 (instance squarePath of Path

 (method (at n)

 (return [sPath n])

)

)

 The following will make ego walk the path once and cue obj1

 at completion of entire path and will cue obj2 at all

 intermediate pts.

 (ego posn:100 100, setMotion: squarePath obj1 obj2)

 RelPath

This class gives the Actor a Path to follow and allows cue'ing of an object

at the intermediate points as well as at the end of the path. It requires

less memory than a Script and is also easier to use. The relative offsets

of the Path are specified in a local array.

In file: path.sc

Inherits from: Path

Inherited by: none

 Example:

 The following uses a RelPath to make ego do loop-the-loops across the

 screen:

 (local

 lPath = [

 -10 -10

 0 -10

 10 -10

 10 0

 10 10

 0 10

 -10 10

 PATHEND

]

)

 (instance loopPath of Path

 (method (at n)

 (return [lPath n])

)

)

 (instance rm1 of Room

 (properties

 picture 1

)

 (method (init)

 (ego

 posn: 60 100,

 init:,

 setMotion: aPath self

)

 (super init:)

)

 (method (cue)

 (ego setMotion: aPath self)

)

)

 The Avoider Class

The Avoider class is a class which helps Actors get around obstacles. If

an Avoider is installed in avoider in an Actor, it gets called instead of

the usual motion class when it is time to move the object. The Avoider then

calls the motion and checks to see if the Actor was able to move. If the

Actor is blocked by something ((client isBlocked:) is TRUE), the Avoider

takes over and attempts to get around whatever is blocking the Actor. In

some cases it looks really smart, in others astoundingly stupid. As we work

on it, it should get better.

In file: motion.sc

Inherits from: Object

Inherited by: none

Properties:

 client

 The Actor to whom this Avoider is assigned.

 heading

 The direction (clockwise or counter-clockwise) in which the

 Avoider turns while trying to get around the obstacle. This is

 picked randomly when the Actor first encounters the obstacle and

 remains constant as long as the Avoider is in control. The

 Avoider attempts to get around the obstacle by turning in 45

 degree increments in the chosen direction until it is able to

 move.

 The Event Class

The Event class is the class of user input events (key presses, mouse

clicks, etc.)

In file: system.sc

Inherits from: Object

Inherited by: none

Properties:

 type

 The kind of input event. The event types are defined in

 kernel.sh:

 mouseDown

 Mouse button was pressed.

 mouseUp

 Mouse button was released.

 keyDown

 Key was pressed.

 keyUp

 Key was released.

 direction

 A direction event, meant to move the player.

 saidEvent

 User typed a line of input, which has been parsed.

 menuStart

 menuHit

 message

 The 'value' of the event. For a key, this is the ASCII value

 corresponding to the key which was pressed.

 modifiers

 Bit-mapped property containing any modifier keys which were down

 when the event occurred. Bits are shiftDown, ctrlDown, and

 altDown.

 x

 y

 The coordinates of the mouse when the event occurred.

 claimed

 TRUE if some object has already responded to the event, FALSE

 otherwise. You should set the claimed property of the event to

 TRUE whenever you respond to an event. In general, you will not

 want to respond to an event whose claimed property is TRUE

 (although there may be exceptions), so you'll want to test its

 value before doing anything based on the event.

Methods:

 new:

 If an input event is in the event queue, return it. Otherwise,

 return 0.

 The User Class

A User is an object which corresponds to the person playing the game and

acts as the intermediary between the person and the other objects in the

game. In the current games there is only one User, and thus we use the

class User rather than an instance of the class.

In file: user.sc

Inherits from: Object

Inherited by: none

Properties:

 alterEgo

 The ID of the Ego which is controlled by the User.

 canInput

 TRUE if the User should accept input lines from its player, FALSE

 otherwise. Any time you don't want the player to be able to type

 an input line, just set canInput to FALSE. Default at startup is

 FALSE.

 canControl

 Set to TRUE to let the User control the alterEgo with direction

 keys, mouse, etc. Anytime you want to set the alterEgo on a pre-

 programmed motion, set canControl to FALSE to prevent the player

 from interrupting the motion and taking control. Default at

 startup is FALSE.

Methods:

 doit:

 The doit: method for User checks for an event. If one is present,

 User sends the handleEvent: event message in succession to

 TheMenuBar (the game's menu bar), alterEgo, and regions (the list

 of regions, beginning with the current room). If any of these

 objects respond to the event, they should set the claimed property

 of the event to TRUE to let the other objects receiving the event

 know that it has been dealt with.

 If, after everyone has had a look at it, the event is still

 unclaimed, User puts up an input line and waits for the player to

 type a line of input. If a line is entered and the kernel is able

 to parse the line, the User turns the event into a saidEvent,

 indicating that valid input has been entered, and again sends the

 handleEvent: event message to the above objects. Once it has done

 so, it disposes of the event and returns.

 The Game Class

The Game class implements the game which is being written. The game author

creates a source file with script number 0 which contains the instance of

the class Game which is the game. This instance is where, for example,

input not handled by any Actor, Room, Region, etc. will be handled.

In file: game.sc

Inherits from: Object

Inherited by: none

Properties:

 score

 The user's current score.

 possibleScore

 The maximum number of points possible in the game.

 speed

 The number of timer ticks (1/60th of a second) between animation

 intervals. Don't set this directly -- use changeSpeed:.

 timers

 A Set of the currently running Timers. The doit: method of the

 Game is what runs the timers.

Methods:

 play:

 Your game is started by the kernel issuing the play: message to

 the object whose ID is in entry 0 of script.000. The play:

 method, as defined in the Game class, is basically

 (self init:)

 (while (not quit)

 (self doit:)

 (Wait speed)

)

 init:

 Initializes the game, setting up some global variables and

 initializing the menu and inventory.

 doit:

 This method is invoked once per animation cycle and passes the

 doit: method along to the rest of the game. It is responsible for

 changing rooms when a newRoom: has been done by the current Room.

 newRoom: n

 Make room number n the current room. This should not be called

 directly from user code. This method deletes the cast and the old

 Room from the heap, then invokes the startRoom: method to load

 and initialize the new Room.

 startRoom: n

 Load and initialize room number n. When this method is invoked,

 the heap has been cleaned up from the previous room. Reimplement

 this to load any Regions which will span several Rooms and create

 heap fragmentation problems. Loading such regions below the Rooms

 lets them stay in the heap without fragmenting it.

 changeScore: n

 Add the number n (which may be negative) to the user's current

 game score. If the StatusLine is being displayed, update the

 score shown there.

 handleEvent: event

 After passing an event to the MenuBar and the cast, the User class

 sends the handleEvent: event message to the game, which in turn

 sends it to the regions. This method may be modified in the game

 instance to do a (super handleEvent:event) followed by processing

 to handle unclaimed events by printing an "I don't understand you"

 message.

 setSpeed: n

 Set the number of timer ticks (1/60th of a second) between

 animation cycles to n. This also resets any Timers in the timers

 Set to account for the change in speed.

 restart:

 This restarts the game at the beginning, allowing the user to

 start again without rebooting the game.

 save:

 Saves the current state of the game to disk, allowing the user to

 quit the game and restart at the same point later using restore:.

 Not implemented.

 restore:

 Restores a saved game state. Not implemented.

 showMem:

 Displays the amount of memory remaining in heap and hunk space.

 The Region Class

A Region is an area of a game which is larger than a Room (see below) -- for

example a forest, island, or a planet. It is used to provide standard

behavior (i.e. responses to user input) in an area of the game without

having to code the behavior into each room in the region. For example in

Space Quest, we might define the town of Ulence Flats and the planet of

Kerona as regions. The Ulence Flats region would be used to handle the

response to 'look city' while in the town, whereas the Kerona region would

handle the response to 'look sky'. Regions take the place of the 'dynamic

logics' of the AGI interpreter. A Region differs from a Locale (see below)

in that a Region has a doit method that will be invoked every animation

cycle by the game. This is where to put any checks or code that

encompasses more than one room and needs to be done each animation cycle.

In file: game.sc

Inherits from: Object

Inherited by: Room

Properties:

 script

 The ID of a Script for the current room.

 number

 The region number. Set by the setRegions: method discussed in

 class Room below, it is used when we dispose the region.

 timer

 The ID of a Timer set to cue: this Region.

 keep

 Set this to TRUE if you want the Region to remain in the heap

 through a newRoom:, to FALSE if you want the Region unloaded.

 initialized

 This property is set to TRUE when the Region is sent the init:

 message after a setRegion: involving it has been done. The init:

 method is not invoked once initialized is TRUE, so a Region will

 only be initialized once for the Rooms which require it.

Methods:

 init:

 When a Region is added to the region list regions by the

 setRegions: method discussed in the class Room below, it is sent

 the init: message in case any setup is needed. The default init:

 method does nothing.

 doit:

 Each active Region is sent the doit: message in each animation

 cycle. The default method passes the doit: message along to the

 script, if there is one, but does nothing else.

 handleEvent: event

 The default method for this sends handleEvent: event to the

 Region's script, if there is one. You may handle events either in

 the Region itself or its script. Remember that in general you

 will not want to handle an event which is claimed, and that you

 should set the claimed property of the event to TRUE if you

 respond to it.

 setScript: script

 Set the script of the Region to script and init: it.

 cue: newState

 Cue this Region's script. If the optional newState is present,

 invoke (script changeState:newState) instead.

 The Locale Class

A Locale is similar to a Region in that it may encompass many Rooms,

but its only purpose is to provide default responses to user input.

Thus, a forest locale will provide generic responses to input like

'look forest', 'look tree', 'climb tree', etc. A locale is attached

to a Room with the setLocales: method.

 The Room Class

The Room class is the most specific Region. It is the point at which a

picture, or 'scene' is defined for the player to walk around in.

In file: game.sc

Inherits from: Region

Inherited by: none

Properties:

 picture

 The number of the picture corresponding to the room. Usually,

 this will just be the room number.

 style

 If style is specified, it overrides the global showStyle when

 picture is drawn during the Room's init:. Any other picture drawn

 once the Room is running must have its show style explicitly

 specified.

 horizon

 The y coordinate which is considered to be the room's horizon.

 Actors which have not had an ignoreHorizon: done on them cannot be

 positioned above this coordinate. Also, an Ego which hits this

 coordinate will have its edgeHit property set to northEdge.

 blocks

 A Set of software blocks (Blocks), rectangles which Actors are

 not allowed to enter.

 north

 east

 south

 west

 The number of the room to which you wish to automatically change

 when ego hits the specified edge of the room. If you wish to

 control the room change yourself when ego hits a certain edge, do

 not specify the room for that edge in the Room instance and check

 (ego edgeHit?) yourself. The edgeHit property will have the value

 northEdge, southEdge, eastEdge, or westEdge if ego hit one of the

 edges.

 controls

 A set of dialog items (DItems) which are push-buttons for this

 picAngle

 This property is the angle above level that you are viewing

 the picture. It is used to set the global perspective upon room

 entry.

 vanishingX

 vanishingY

 These are set according to where the vanishing point is in the

 picture to be shown. They determine the angle that the arrow

 keys will move ego in a room. The Up key will always move ego

 towards the vanishing point and the down arrow away. The default

 give a straight up and down in response to these keys.

Methods:

 init:

 The default init: for a Room is to create an empty Set of

 Blocks, draw the picture specified by picture, and set ego's

 position based on its position in the previous room. You will

 want to supplement this with the following:

 Load all views, sounds, pictures, etc. which will be required

 by the room so as to get all disk access done at Room

 initialization time.

 Initialize all Actors and Actors which are to be in the Room

 initially.

 Set a script for the Room.

 Add any required Blocks to the Room.

 doit:

 Send the doit: message to this Room's script, if it has one, then

 check to see if ego has hit the edge of the Room. If ego has hit

 an edge and there is a room number specified for the edge, invoke

 the newRoom: method to change to that room.

 dispose:

 This is called by the game when changing from this Room to a new

 Room. The game handles disposing of the current cast, then does a

 (curRoom dispose:). The default dispose: simply disposes of the

 Room's script, blocks, and controls. You will want to supplement

 this to dispose: of anything else which you have created which is

 specific to the Room, and any modules which the Room has loaded.

 setRegions: region [region ...]

 Sets the Regions which contain this room. This should be invoked

 in the init: method of the room. The parameters region are the

 script numbers of the regions. They should be listed from most

 specific to most general, since the order in which they are listed

 is the order in which they will be invoked. Thus, for a room in

 Ulence Flats in Space Quest, we might write

 (self setRegions: ULENCE_FLATS KERONA)

 to say that we are in the town of Ulence Flats on the planet

 Kerona.

 The global variable regions contains the ID of a List of regions

 which are sent the doit: and handleEvent: messages in order when

 appropriate. The newRoom: method of Game puts the current room at

 the head of this list, and setRegions: adds Regions to the end of

 the list in the order in which they are listed in the parameter

 list. If the Region was used in the previous Room, it will be

 neither reloaded nor reinitialized. At the end of the newRoom:

 method, all Regions in the list which do not refer to the current

 Room are deleted.

 handleEvent: event

 The default Room method passes the event along to the Room script

 (if there is one) and then to any controls in the room.

 newRoom: n

 This method is the one to use when changing Rooms. It is invoked

 when the Room automatically changes to a new Room when ego hits

 the edge. Reimplement this method if you need to do some

 processing (such as dispose:ing a Region) before changing rooms.

 overlay: picture

 This method overlay a picture over the current picture.

 The Timer Class

The Timer class implements the concept of an alarm clock -- you can set it

to cue: an object at some future time.

In file: system.sc

Inherits from: Object

Inherited by: none

Properties:

 cycleCnt

 The interval to be timed measured in animation cycles. This is

 set by the set: and setCycle: methods, and should not be

 manipulated directly.

 seconds

 The interval to be timed measured in seconds. This is set by the

 setReal: method and should not be manipulated directly.

 lastTime

 Used internally when timing seconds.

 client

 The object to cue: when the timer goes off.

Methods:

 The InvItem Class

InvItems are the items which ego can gather and use as he moves through the

game. As described in the description of the Inventory class, they are

generally referred to by their position in the Inventory list rather than by

their object ID (which is not known in all modules).

In file: invent.sc

Inherits from: RootObj

Inherited by: none

Properties:

 name

 The string which is the InvItem's name. This is what will be

 shown in the inventory window if you do an

 (inventory showSelf:ego) and ego has the item.

 said

 A said-string describing the way in which the User may refer to

 the item.

 description

 The description of the object to be displayed if the User clicks

 the mouse on the item's name in the inventory window.

 view

 loop

 cel

 The view, loop, and cel to be displayed for the item if the User

 clicks the mouse on the item's name in the inventory window.

 owner

 The current 'owner' of the item. This is either a room number

 (the item is in the room) or an object ID of an Ego (the Ego

 possesses the item).

 script

 The object ID of a Script for the item. This can be used to keep

 track of the state of a changeable item and to change the view,

 loop, cel, and description of the item. Thus, an electronic

 device might have the following script attached to it:

 (instance deviceScript of Script

 (method (changeState newState)

 (switch (= state newState)

 (deviceOn

 (client

 description:"The device is on."

 cel:0

)

)

 (deviceOff

 (client

 description:"The device is off."

 cel:1

)

)

)

)

)

 Thus, in response to user input of 'turn device on', you can write

 ((inventory at:iDevice) changeState:deviceOn)

Methods:

 saidMe:

 Return TRUE if the user input referred to this item, FALSE

 otherwise.

 ownedBy: whom

 Return TRUE if the item is owned by whom (either a room number or

 an object ID), FALSE otherwise.

 moveTo: whom

 Set the item's owner to whom (either a room number of object ID).

 showSelf:

 Display the item's view, loop, cel, and description in a window.

 changeState: newState

 Send the changeState:newState message to the item's script.

 The Block Class

The Block class implements ability to keep Actors out of certain areas

on the screen without controls being added to the picture. In particular

they are the only way of preventing an Actor who is allowed to have his

baseRect off the bottom of the screen from walking into something, since the

Actor's baseRect will not encounter any blocking controls.

In file: actor.sc

Inherits from: Object

Inherited by: none

Properties:

 active

 Set to TRUE if the Block is active, FALSE otherwise. Actors

 can move into inactive Blocks.

 top

 bottom

 left

 right

 The bounding coordinates of the Block rectangle.

Methods:

 init:

 Add the Block to the set of blocks for the current room and

 enable the Block.

 doit: actor

 Return TRUE if actor is outside of the Block (and is thus in a

 legal position) or FALSE if it is inside the Block (and thus

 must be moved out). This is called in each Actor's canBeHere:

 method.

 dispose:

 Delete the Block from the set of blocks for the current room

 and dispose of it if it is a dynamic instance.

 enable:

 Set the active property of the Block to TRUE, so that Actors

 cannot enter it.

 disable:

 Set the active property of the Block to FALSE, so that Actors

 can enter it.

 The Cage Class

The Cage class implements ability to keep Actors in a rectangular region.

In file: actor.sc

Inherits from: Block

Inherited by: none

 top

 bottom

 left

 right

 The bounding coordinates of the enclosing Cage.

Methods:

 init:

 Add the Cage to the set of blocks for the current room and

 enable the Cage.

 doit: actor

 Return TRUE if actor is inside of the Block (and is thus in a

 legal position) or FALSE if it is outside the Cage (and thus

 must be moved back in). This is called in each Actor's canBeHere:

 method.

 dispose:

 Delete the Cage from the set of blocks for the current room

 and dispose of it if it is a dynamic instance.

 enable:

 Set the active property of the Cage to TRUE, so that Actors

 cannot leave it.

 disable:

 Set the active property of the Cage to FALSE, so that Actors

 can leave it.

 The Sound Class

This is the class which allows sound to be played.

In file: game.sc

Inherits from: Object

Inherited by: none

Properties:

 done

 Set to TRUE after the sound has finished playing, FALSE while it

 is playing.

 number

 The number of the sound.

 priority

 The priority of the sound if multiple sounds are playing. Most

 sound effects should have the default priority of 0. More

 important sounds (say an error beep) should have positive

 priorities -- the more important the higher the priority. Less

 important sounds (background music) should have negative

 priorities. This will allow sound effects to override background

 music (which will resume at the appropriate point) and error beeps

 to override sound effects.

 signal

 This is a bit-mapped property used to set characteristics of the

 sound. Its bits are defined in base.sh. Only one bit,

 blockingSnd, is currently defined. When it is set, the sound

 blocks when it is playing -- all game play stops until the sound

 is complete. Sampled sound effects are blocking sounds by

 default, and needn't have this bit set.

Methods:

 init:

 Initialize the sound and set any appropriate bits in signal to

 indicate the sound's nature.

 play:

 Start the sound playing and add it to sounds, the list of sounds

 which are playing.

 dispose:

 Stop the sound.

 The StatusLine Class

The StatusLine class provides a status line at the top of the screen which

is programmer-definable. When enabled, it overlays the menu bar. The user

may still access the menu by pressing Esc or positioning the mouse pointer

in the status line end pressing the mouse button. The status line usually

shows the player's score. To use a status line in a game, create an

instance of class Code which has the interface described in code below and

set the code property of StatusLine to it. To display the status line,

execute (StatusLine enable:).

In file: game.sc

Inherits from: Object

Inherited by: none

Properties:

 state

 Whether or not the status line is being displayed. Do not

 manipulate this directly.

 code

 An instance of Code which formats the status line. It will be

 called from StatusLine's doit: method with a pointer to string

 storage as a parameter:

 (code doit: @theLine)

 The code should format the status line into the provided string.

Methods:

 doit:

 Format the status line and display it if it has been turned on.

 enable:

 Turns the status line on. Invokes the doit: method.

 disable:

 Turns the status line off. Invokes the doit: method.

 The File Class

The File class allows you to open and write to a file on disk. This is

useful for logging user input for which you have no response in the

development or beta-test phase, writing utilities which allow you to

position Actors on a picture and then write out the coordinates, etc.

In file: file.sc

Inherits from: Object

Inherited by: none

Properties:

 name

 The name of the file. Defaults to "gamefile.sh".

 handle

 The handle by which the operating system refers to the opened

 file. Don't monkey with this, or you may blow away the OS.

Methods:

 open: [flag]

 Open the file whose name is name for writing. The optional

 parameter flag may be either fAppend, in which case writing

 begins at the end of an existing file, or fTrunc, in which case

 the contents of the file are deleted before writing to it. If

 flag is not present, fAppend is assumed.

 write: str [str ...]

 Write the strings pointed to by str to the file.

 close:

 Close the file.

 The Code Class

The class Code encapsulates the concept of a subroutine into an object which

can be executed or passed to an object for execution. This class is also used

for making loopers and viewers.

In file: system.sc

Inherits from: Object

Inherited by: none

Properties:

Methods:

 doit: [args...]

 The doit: method of a Code object is the code to be executed. Any

 number of arguments is allowed.

 Global Variables

Global variables 0 through 49 are reserved for use by the system classes.

Game-specific global variables start at 50. The following global variables

are defined by the system. For up to date global list see s:system.sh.

ego

 The ID of a static instance of class Ego defined in game.sc. This is

 the protagonist of the game.

curRoom

 The ID of the current Room.

userFont

 The number of the font to be used in Print statements, etc. Default is

 1. Set it to the font you wish to use in the init: method of your

 Game, or change it at will in the game.

cast

 The ID of a Set of Actors and Egos which constitutes the characters on

 the screen.

quit

 The main loop of the game is

 (while (not quit)

 (theGame doit:)

 (Wait speed)

)

 so setting quit to TRUE breaks out of the main loop and terminates the

 game.

addToPics

 A Set of PicViews which have been added to the current picture.

debugOn

 A generic debugging flag. I usually have a Debug menu item to set it,

 and trigger any debug display that I want off of it, rather than

 creating a special trigger whenever I want to debug something.

sounds

 The Set of Sounds currently playing.

inventory

 The ID of the Inventory class or instance which is the Set of all

 InvItems (inventory items) in the Game. Inventory related issues are

 not well defined yet...

theGame

 The ID of the Game instance.

regions

 The Set of Regions currently in effect.

curRoomNum

 The number of the current Room.

prevRoomNum

 The number of the previous Room. (So you know how you got where you

 are.)

newRoomNum

 Used by a Room to signal to the Game that it should change to a new

 Room.

showStyle

 The global style for the transition from one picture to another. This

 may be overridden by the style property of a given room. See the

 DrawPic kernel function for the possible styles.

aniInterval

 The number of ticks it took to do the last animation cycle. This is

 used to test animation speed on a particular machine.

speed

 The number of ticks between animations. This is set, usually as a menu

 option, to determine the speed of animation. The default is 6.

timers

 The List of timers in the game.

score

 The player's current score.

possibleScore

 The games highest possible score.

theCursor

 The number of the current cursor.

normalCursor

 Number of normal cursor form.

waitCursor

 Cursor number of "wait" cursor.

smallFont

 Small font for save/restore, etc.

lastEvent

 The last event (used by save/restore game).

modelessDialog

 The modeless Dialog known to User and Intrface.

bigFont

 The number for a large font.

volume

 Sound volume on supported machine.

version

 The SCI version string.

locales

 Set of current locales.

curSaveDir

 Address of current save drive/directory string.

aniThreshold

perspective

 The Player's viewing angle. This is set according

 to the Rooms picAngle property. Degrees away from

 vertical along y axis.

features

 Locations that may respond to events.

sortedFeatures

 The features and cast sorted by "visibility" to ego.

useSortedFeatures

 If TRUE enable cast & feature sorting.

egoBlindSpot

 Used by sortCopy for sortedFeatures to exclude actors

 behind ego within angle from straight behind. Default

 zero is no blind spot.

overlays

 The overlay List.

doMotionCue

 A motion cue has occured - process it. The Games doit method

 gives the motionCue: message to each element of the cast if this

 is set to TRUE.

systemWindow

 ID of standard system window. If you wish to supply your own window

 for system messages set this to the ID of your window.

lastSysGlobal

 Defines the end of Global variable space.

 Index

-info- . 5

active . 49

Actor . 22

add: . 8, 10, 11

addToEnd: . 10

addToFront: . 10

addToPic: . 19

addToPics . 54

allTrue: . 8

alterEgo . 38

at: . 10

avoider . 23, 35

baseRect . 18

BaseSetter . 22

BegLoop . 31

blocks . 43

bottom . 49

caller . 28, 32

canBeHere: . 24

canInput . 38

cast . 54

cel . 17, 27, 47

changeScore: . 40

changeState: . 13, 48

Chase . 34

check: . 24

claimed . 36

client . 15, 28, 32, 35, 46

close: . 52

Code . 23, 51, 53

Collection . 8

contains: . 8

controls . 43

cue: . 14, 20, 42

curRoom . 54

curRoomNum . 55

Cycle . 20, 21, 28

cycleCnt . 15, 28, 46

cycleDir . 28

cycleDone: . 29

cycler . 20

cycleSpeed . 20

CycleTo . 31

debugOn . 54

delete: . 8, 19

description . 47

di . 32

DirLoop . 23

disable: . 49, 51

dispose: . 6, 19, 44, 49, 50

distance . 33, 34

distanceTo: . 24

doit: 6, 20, 23, 26, 28, 38, 39, 41, 44, 49, 51, 53

done . 50

dx . 32

dy . 32

eachElementDo: . 8

east . 43

edgeHit . 26, 43

Ego . 26, 54

elements . 8

enable: . 49, 51

endCel . 31

Event . 36

File . 52

findPosn: . 24

first: . 9, 10

firstTrue: . 8

Follow . 33

forceUpd: . 18

Forward . 30

Game . 39

get: . 26

handle . 52

handleEvent: . 14, 19, 38, 40, 42, 45

has: . 26

heading . 22, 35

hide: . 19

horizon . 43

i1 . 32

i2 . 32

ignoreActors: . 19

illegalBits . 22

incr . 32

indexOf: . 10

init: 6, 18, 23, 26-28, 39, 41, 44, 49, 50

initialized . 41

inRect: . 24

inventory . 12, 47, 54

InvItem . 47

isBlocked: . 24

isEmpty: . 9

isStopped: . 24

keep . 41

last: . 10

lastSeen . 17

lastTime . 15, 46

left . 49

List . 10

loop . 17, 27, 47

looper . 23

message . 36

modifiers . 36

Motion . 22, 24, 32

mover . 22

moveSpeed . 22

MoveTo . 33

moveTo: . 48

myself: . 7

name . 6, 47, 52

new: . 6, 37

newRoom: . 40, 45

newRoomNum . 55

next: . 9, 10

nextCel: . 28

north . 43

nowSeen . 17

number . 41, 50

Object . 6

open: . 52

overRun . 55

ownedBy: . 48

owner . 47

perform: . 7

picture . 43

play: . 39, 50

posn: . 18

possibleScore . 39

prev: . 10

prevDirKey . 26

prevRoomNum . 55

priority . 17, 27, 50

Prop . 20

put: . 26

quit . 54

Region . 41

regions . 44, 55

restart: . 40

restore: . 40

Reverse . 30

right . 49

Room . 43

RootObj . 5

said . 47

saidMe: . 12, 48

save: . 40

score . 39

Script . 13, 20, 41, 47

seconds . 15, 46

Set . 11

set: . 16

setAvoider: . 24

setCel: . 19

setCycle: . 16, 21, 30, 31

setLoop: . 19

setMotion: . 24, 33, 34

setPri: . 18

setReal: . 16

setRegions: . 44

setScript: . 20, 42

setSpeed: . 40

showMem: . 40

showSelf: . 6, 7, 12, 48

showStr: . 6, 19

showStyle . 43, 55

signal . 18, 27, 50

size . 8

Block . 43, 49

Blocks . 24

Sound . 50

sounds . 54

south . 43

species . 5

speed . 39

start . 13

startRoom: . 40

startUpd: . 18

state . 13, 51

StatusLine . 40, 51

stopUpd: . 18

style . 43, 55

superClass . 5

theGame . 54

timer . 13, 15, 20, 41, 46

top . 49

type . 36

underBits . 17

understands: . 7

User . 26, 38

userFont . 54

view . 17, 27, 47

viewer . 23

Walk . 30

Wander . 33

west . 43

who . 33, 34

write: . 52

x . 17, 27, 32, 36

xAxis . 32

xLast . 22

xStep . 22

y . 17, 27, 32, 36

yLast . 22

yStep . 22

