

 SCI Parser

 Programmer's Reference

 by Pablo Ghenis

 July 21, 1988 9:56:56 am

 Sierra On-line CONFIDENTIAL

 Contents

 I. Introduction

 II. User parse trees

 III. Said specs

 A. Syntax

 B. Spec trees

 IV. Tree Matching

 V. Examples

 - 2 -

 Introduction

 Purpose

 The parser is the part of SCI that accepts sentences from the

 user and allows game coders to specify how to respond to it. For

 example "get the diamond" is an acceptable sentence for a user to

 type, and the coder can recognize it with a "spec" such as

 'get/diamond', which is followed by SCI code to be executed IF

 this sentences is entered.

 There are three functional blocks in the parser: the sentence

 parser, the spec parser and the matcher. The sentence parser

 takes the words typed by the user and generates a "tree" that

 describes the sentence's structure using traditional grammar

 rules. The spec parser accepts "specs" and also generates tree

 structures. A special syntax is provided for specs since they are

 more versatile than simple sentences; for example one can SPECify

 alternative or optional words to be recognized. Finally, the

 matcher is the module that takes both trees and decides whether

 or not there is a match.

 The following block diagram describes the parser:

 ********* ************

 * User ************* Sentence *

 * input * * * * Parser *

 ********* * * ************

 * * *

 ************ * * * ************

 * External ***** * ****** Sentence *

 * Grammar * * * Tree *** ***********

 ************ * ************ * * *

 * *** Matcher *

 ************** * ************ * * *

 * External ***** * Spec *** ***********

 * Dictionary **** ****** Tree *

 ************** * * ************

 * *

 * *

 ********* * ************

 * Coder ************* Spec *

 * Specs * * Parser *

 ********* ************

 In the case of a common sentence, only a handful of comparisons

 may be required before a match is found. If the user were to type

 in something totally inappropriate, the resulting tree might be

 compared to fifty or even a hundred specs before falling through

 to a default answer like "what are you trying to say?".

 - 3 -

 Parseable Sentences:

 SENTENCE POSSIBLE MATCHING SPECS

 "look" 'look[/!*]' or 'look'

 "get the food" 'get/food' or 'get'

 "hit the small tree" 'hit/tree<small'

 'hit/tree[<small]'

 'hit[/tree[<small]]

 'hit'

 "hit the small green tree with the ax"

 'hit/tree/ax'

 'hit/tree<(green<small)/ax<with'

 "burn it" = "burn tree" after last sentence

 'burn/tree'

 "when do fairies sleep?"

 '(sleep<do<fairies)<when'

 "what time is it?"

 'is<what<time'

 - 4 -

 User Parse Trees

 When a user types in a sentence, the sequence of words is used to

 create a parse tree that represents the syntactic structure of

 the sentence. This is done according to traditional grammar

 rules.

 The parser uses two external resources: the dictionary and the

 grammar. The dictionary defines which words will be recognized

 and the grammar defines the rules used to analyze the sentence.

 Since both of these resources are external, they can be changed

 and recompiled. The dictionary is recompiled by typing VC

 (vocabulary compiler) and the grammar requires GC (grammar

 compiler). For information on how to modify these files, see your

 local friendly and infinitely patient SCI system programmer. :-)

 All sentences typed during a game are imperative, that is, they

 constitute commands. An imperative sentence starts with a verb

 and is followed by optional direct and indirect objects.

 - 5 -

 Example: "take the gold from the dwarf"

 root=vp

 |

 +-------------+------------------+

 | | |

 root=verb dobj=np iobj=ap

 | | |

 "take" | |

 +-------+ +---------+

 | | | |

 ignore root mod root

 art noun prep np

 "the" "gold" "from" |

 +-------+

 ignore root

 art noun

 "the" "dwarf"

 The above tree can also be written using parenthesized notation

 as follows:

 (root vp

 (root verb . 'take')

 (dobj np

 (ignore art . 'the')

 (root noun . 'gold')

)

 (iobj ap

 (mod prep . 'from')

 (root np

 (ignore art . 'the')

 (root noun . 'dwarf')

)

)

)

 take some time to look at this example and understand the new

 notation. For the sake of convenience it will be used throughout

 this document.

 The grammar rules used to produce the above tree are:

 s = vp

 vp = (root verb) (dobj np) (iobj ap)

 np = (ignore art) (root noun)

 ap = (mod prep) (root np)

 verb = from dictionary

 art = from dictionary

 noun = from dictionary

 prep = from dictionary

 - 6 -

 Said-specs

 The previous section briefly describes the upper branch of the

 parsing system. The lower branch allows the SCI coder to specify

 what sentences he wants to recognize using "Said" statements. The

 above sentence ("take the gold from the dwarf") can be recognized

 by:

 (Said 'take/gold/dwarf<from')

 which would return TRUE if the user typed the phrase in. Let's

 dissect this spec:

 take:

 the first of three sections separated by slashes, it is the

 verb in the verb phrase.

 /gold:

 the slash signals the beginning of the direct object, which

 is a noun phrase with root "gold"

 /dwarf:

 the slash signals the beginning of the indirect object,

 which is an Associated Phrase. The root is "dwarf"

 <from:

 the "<" means "modified by". In this case the preposition

 "from" modifies the root of the AP

 - 7 -

 Said syntax

 Said-specs are written in a sub-language with its own syntax and

 operators to produce expressions not unlike those we use for

 arithmetic.

 The main concept implemented by the "Said-er" is:

 VERB/DIRECT OBJECT/INDIRECT OBJECT

 Note that the slash is a part of the description of a dobj or

 iobj, not a detached separator.

 Each part can be made OPTIONAL by enclosing it in brackets. This

 is also true for any subpart. Thus 'look [/rock]' means a

 phrase with verb 'look' and an optional direct object that should

 be 'rock' if present. Note that the slash is INSIDE the brackets.

 MODIFIERS:

 Signalled using "<", a given root can have multiple modifiers as

 in "sit down on bed" which can be specified by 'sit<down<on/bed'

 since the two prepositions are modifiers to the verb.

 In general, adverbs and prepositions modify verbs, adjectives

 modify nouns or other adjectives and nouns modify other nouns.

 ALTERNATIVES:

 Let's say we want to respond the same way to either

 "start the car" and

 "turn on the car"

 this can be done with OR alternatives:

 'start,(turn<on)/car'

 The comma means "OR". Notice the parenthesis surrounding turn<on;

 they are required because "," has higher PRECEDENCE than "<".

 This is just like common arithmetic expressions, as in

 2*3+4 versus 2*(3+4) where the parenthesis make the difference

 between getting 10 or 14 because "*" has higher precedence than

 "+"

 - 8 -

 Said Spec Trees:

 When a spec is processed, it is turned into a tree that can be

 compared with the user parse tree. Since the spec IS a structural

 specification, the mapping is straightforward. It is important to

 keep these mappings in mind though, because our goal is to

 imagine the structure of possible user input trees and create

 specs that match them closely enough for the similarity to be

 recognized by the matcher.

 At the top level there are three possible "slots" to fill: verb,

 dobj and iobj. At lower levels the only slots to be filled are

 ROOT and MOD(ifier). Alternatives and optionals generate OR and

 OPT nodes with the appropriate children nodes under them.

 Example: 'start,(turn<on)[/car]' generates the following tree:

 (root s

 (root verb

 (or

 (root verb . 'start)

 (root

 (root verb . 'turn')

 (mod prep . 'on)

)

)

)

 (opt

 (dobj np

 (root noun . 'car')

)

)

)

 - 9 -

 Tree Matching:

 The tree matching algorithm is quite simple: for each part of the

 spec tree, find a corresponding branch in the user parse tree.

 For example if one is looking for a modifier match, one may

 search both among the modifiers at the current tree depth and

 also among the modifiers of the roots, the modifiers of the

 root's roots and so on...

 Special handling is required for OR and OPT nodes. An OR-node

 match will only be declared a failure if all the options fail,

 and it will succeed as soon as one of the options does, not

 bother to check the rest. An OPT-node match will succeed if a

 true match is found but also if no matching slot exists in the

 user tree. However if there is a matching slot with a different

 word in it the OPT-node match will fail.

 Example: "start the radio" will fail to unify with

 'start,(turn<on)[/car]' as follows:

 User tree:

 (root vp

 (root verb . 'start')

 (dobj np

 (ignore art . 'the')

 (root noun . 'radio')

)

)

 Procedure:

 match spec root:

 match spec OR-node

 try first OR-option (root verb .'start') -> OK

 match spec optional dobj:

 look for a dobj in user tree -> found

 if found, compare -> FAILED

 Thus the tree comparison fails in this example.

 - 10 -

 EXAMPLES:

 "get rock"

 'get/rock'

 'get[/rock]'

 '[get]/rock'

 'get' or '/rock'

 "hit tree with ax"

 'hit/tree/ax<with'

 'hit/tree/ax[<with]'

 "go get prison guard jacket"

 'get<go/jacket<(guard<prison)'

 "get food" followed by

 "eat it" is the same as

 "get food" and "eat food"

 "what time is it?"

 'is<what<time'

 "which witch made stew?"

 'made<which<witch/stew'

 "do fairies sleep?"

 'sleep<fairies<do'

 "when do fairies sleep?"

 '(sleep<fairies<do)<when'

 "get across creek with boat"

 'get<across/creek/boat'

 "hamburger"

 '/hamburger'

 "coffee with sugar"

 '/coffee/sugar<with'

 - 11 -

